
Mathematical Methods and Algorithms For Signal Processing:

Solutions Manual

Version 1.0

Todd K. Moon

February 17, 2004

Preface

It is hoped that the solutions for Mathematical Methods and Algorithms for Signal Processing turns out to
be helpful to both instructor and student.

In the solutions, an attempt has been made to display key concepts leading to the solution, without
necessarily showing all of the steps. Depending on the problem (and my energy available for typing), varying
degrees of detail are shown. In some cases, a very complete solution is provided; in others, simply some
hopefully helpful hints. Wherever I found the computer to be of help in obtaining the solution, I have
attempted to provide the input to the computer, either in Matlab or Mathematica; this provides, I think,
more useful information than simply giving a numeric or symbolic answer.

While the vast majority of the problems in the book have solutions presented here there remain a few
which do not. These include some computer problems (although many of the computer exercises do have
solutions), some which involve simulations (in which case a starting point is frequently suggested), and some
which would be typographically difficult.

While I have attempted to be accurate in my solutions, the very size of the document and the amount of
detail leaves me (in)secure in the knowledge that there must still be errors there. I have been greatly assisted
in tracking down errors as I have taught through the text in our Fall Semester 6660 class (Mathematical
Methods for Signal Processing), but we haven’t made it through the book!

I gratefully acknowledge the assistance of Wynn Stirling with some problems from chapter 11 and chapter
13.

Feedback is important to me. If errors or improved solutions are found, please let me know at
Todd.Moon@ece.usu.edu.

Sooner or later they will be incorporated into these solutions. And any new problems that are found that
fit within a chapter are also of interest.

iv Preface

Contents

Preface iii

1 Introduction 1

2 Signal Spaces 25

3 Representation and Approximation in Vector Spaces 45

4 Linear operators and matrix inverses 71

5 Some important matrix factorizations 89

6 Eigenvalues and Eigenvectors 99

7 The Singular Value Decomposition (SVD) 119

8 Some special matrices and their applications 125

9 Kronecker Products and the vec operator 133

10 Introduction to Detection and Estimation, and Mathematical Notation 141

11 Detection theory 145

12 Estimation theory 167

13 The Kalman Filter 179

14 Basic Concepts and Methods of Iterative Algorithms 185

15 Iteration by Composition of Mappings 195

16 Other iterative algorithms 201

17 The EM Algorithm in Signal Processing 207

18 Theory of Constrained Optimization 211

19 Shortest-Path Algorithms and Dynamic Programming 217

20 Linear Programming 223

A Basic concepts and definitions 231

B Completing the square 239

vi CONTENTS

C Basic Matrix Concepts 241

D Random Processes 245

E Derivatives and Gradients 247

F Conditional Expectations of Multinomial and Poisson r.v.s 255

List of Algorithms

1.1 AR(2) coefficients to autocorrelation . 4
1.2 Cyclic autocorrelation . 22
2.1 Mathematica implementation of Gram-Schmidt . 39
2.2 Matlab implementation of Gram-Schmidt . 40
2.3 Find the set of orthogonal functions . 41
2.4 Gram Schmidt keeping nonzero columns of Q . 42
2.5 Weight Gram Schmidt . 42
2.6 Modified Gram Schmidt . 43
2.7 Modified Gram Schmidt . 43
3.1 LS and WLS example . 46
3.2 LS filtering example . 48
3.3 Wiener filtering example . 50
3.4 Estimate correlation . 54
3.5 Wiener filter example . 54
3.6 Wiener filter example . 55
3.7 Wiener filter example . 57
3.8 Minimum energy example . 59
3.9 Discrete time Minimum energy example . 60
4.1 Weighted RLS . 81
4.2 Initialize Weighted RLS . 81
4.3 Recursive vector matching . 83
4.4 RLS Experiment code . 84
4.5 RLS System Identification . 85
5.1 Solving Ax = b using newlu . 89
5.2 LU factorization with rounding . 90
5.3 LU backsubstitution with rounding . 91
5.4 Round to digits . 91
5.5 Forward subsitution . 92
5.6 Backward subsitution . 92
5.7 Compare least-squares solutions . 95
6.1 Custom eigenvalues I . 105
6.2 Custom eigenvalues II . 105
6.3 Plot level curves of Q R(x) . 106
6.4 Plot ellipse . 108
6.5 Constrained stationary values . 109
6.6 Principal component experiment . 110
6.7 Eigenfilter example . 111
6.8 Pole placement example . 115
8.1 Test Prony’s method . 125
8.2 Prony’s method . 126
9.1 Solve a Sylvester’s equation . 138
9.2 Separable matrix multiplication . 139
11.1 Solve for Poisson detection parameters . 148

viii LIST OF ALGORITHMS

11.2 Poisson ROC . 149
11.3 Probability of error for a general square constellation . 153
11.4 ROC for BSC . 157
11.5 Bayes envelope for BSC . 158
11.6 Bayes envelope for BSC . 162
12.1 Bayes propagation for non Gaussian . 177
14.1 Explore the logistic map . 185
14.2 An affine mapping . 185
14.3 Experiments with an affine mapping . 187
14.4 Root finding using bisection . 188
14.5 Root finding using secant method . 189
14.6 LMS experiments . 190
15.1 Mapping a matrix X to the nearest Vandermonde matrix . 197
15.2 Find permutation mapping x to z . 198
16.1 Fuzzy clustering . 201
A.1 A gradient descent function . 234
A.2 Taylor Expansions . 235
B.1 Calculations for Gaussian conditional density . 240

Chapter 1

Introduction

1.4-1 (a) z3 = z1z2 = e+ jf = (ac− bd) + j(ad+ bc).
[
c −d
d c

] [
a
b

]

=

[
ac− bd
ad+ bc

]

=

[
e
f

]

(b)
e = (a− b)d+ a(c− d) = ac− bd
f = (a− b)d+ b(c+ d) = ad+ bc

(c)
[
1 0 1
0 1 1

]




(c− d) 0 0
0 (c+ d) 0
0 0 d









1 0
0 1
1 −1





[
a
b

]

=

[
1 0 1
0 1 1

]




(c− d) 0 0
0 (c+ d) 0
0 0 d









a
b

a− b





=

[
1 0 1
0 1 1

]




a(c− d)
b(c+ d)
d(a− b)





=

[
a(c− d) + d(a− b)
b(c+ d) + d(a− b)

]

=

[
e
f

]

.

1.4-2
H(z)(1− pz−1)r = k0 + k1(1− pz−1) + k2(1− pz−1)2 + k3(1− pz−3)3 + · · ·+ kr−1(1− pz−1)r−1

so that
H(z)(1− pz−1)r

∣
∣
z=p

= k0

Also

d

dz−1
H(z)(1− pz−1)r = −pk1 − 2pk2(1− pz−1)− 3pk3(1− pz−3)2 − · · · − (r − 1)pkr−1(1− pz−1)r−2

so that
d

dz−1
H(z)(1− pz−1)r

∣
∣
∣
∣
z=p

= −pk1

from which

k1 = −1/p
d

dz−1
H(z)(1− pz−1)r

∣
∣
∣
∣
z=p

.

Continuing similarly, (1.8) follows.

1.4-3 (a)

H(z) =
1− 3z−1

1− 1.5z−1 + .56z−2
=

1− 3z−1

(1− .8z−1)(1− .7z−1)
=

k1

(1− .8z−1)
+

k2

(1− .7z−1)

where, by cover-up and plug-in (CUPI)

k1 =
(1− 3z−1)

(1− .7z−1)

∣
∣
∣
∣
z=.8

= −22 k2 =
(1− 3z−1)

(1− .8z−1)

∣
∣
∣
∣
z=.7

= 23.

Matlab results (with some reformatting)::

2 Introduction

[r,p] = residuez([1 -3],[1 -1.5 .56])

r =[-22.0000 23.0000]

p =[0.8000 0.7000]

(b)

H(z) =
1− 5z−1 − 6z−2

1− 1.5z−1 + .56z−2
=

1− 5z−1 − 6z−2

(1− .8z−1)(1− .7z−1)

= −10.7143 +
11.7143− 21.− 714z2

(1− .8z−1)(1− .7z−1)

= −10.7143 +
k1

(1− .8z−1)
+

k2

(1− .7z−1)

where, by CUPI,

k1 =
1− 5z−1 − 6z−2

(1− .7z−1)

∣
∣
∣
∣
z=.8

= −117 k2 =
1− 5z−1 − 6z−2

(1− .8z−1)

∣
∣
∣
∣
z=.z

= 128.7143

Matlab results:

[r,p,k] = residuez([1 -5 -6],[1 -1.5 .56])

r =[-117.0000 128.7143]

p =[0.8000 0.7000]

k = -10.7143

(c)

H(z) =
2− 3z−1

(1− .3z−1)2
=

k0

(1− .3z−1)2
+

k1

(1− .3z−1)

where

k0 = 2− 3z−1
∣
∣
z=.3

= −8 k1 =
−1

.3

d

dz−1
2− 3z−1

∣
∣
∣
∣
z=0.3

= 10.

Matlab results:

[r,p] = residuez([2 -3],conv([1 -.3],[1,-.3]))

r =[10.0000 -8.0000]

p =[0.3000 0.3000]

(d)

H(z) =
5− 6z−1

(1− .3z−1)2(1− .4z−1)
=

k0

(1− .3z−1)2
+

k1

(1− .3z−1)
+

k2

(1− .4z−1)

where, by CUPI,

k0 =
5− 6z−1

(1− .4z−1)

∣
∣
∣
∣
z=.3

= 45 k2 =
5− 6z−1

(1− .3z−1)2

∣
∣
∣
∣
z=.4

= −160

and

k1 = − 1

.3

d

dz−1

5− 6z−1

(1− .4z−1)

∣
∣
∣
∣
z=.3

= 120

Matlab results:

[r,p] = residuez([5 -6],conv(conv([1 -.3],[1,-.3]),[1 -.4]))

r =[-160 120 45]

p =[0.4000 0.3000 0.3000]

1.4-4 (a) X(z) =
∑

t x[t]z
−t, so that

d

dz
X(z) =

∑

t

(−t)x[t]z−t−1,

so

−z d
dz
X(z) =

∑

t

(tx[t])z−t = Z[tx[t]]

(b) Use the previous result:

tptu[t]↔ −z d
dz

1

(1− pz−1)
.

3

(c) t2ptu[t]↔ −z d
dz

pz−1

(1−pz−1)2
. Using Mathematica, we readily obtain using

Together[-z D[p z^(-1)/(1-p z^(-1))^2,z]]

the answer

t2ptu[t]↔ pz−1(1 + pz−1)

(1− pz−1)3
.

(d) The pole of a mode of the form tkptu[t] is of order (k + 1).

1.4-5 We have

ryy[k] = E[y[t]y[t− k]]
so that

ryy[−k] = E[y[t]y[t+ k]] = E[y[u]y[u− k]] = ryy[k]

where u = t+ k

1.4-6 Letting b0 = 1, we have

ryy[k] = E[

q
∑

i=0

bif [t− i]
q
∑

j=0

bjf [t− j − k]]

=

q
∑

i=0

q
∑

j=0

bibjσ
2
fδi,j+k = σ2

f

∑

i

bibi−k.

1.4-7
ryy[0] = σ2

f [(1)2 + (2)2 + 32] = 1.4

ryy[1] = σ2
f [(1)(2) + (2)(3)] = .8

ryy[2] = σ2
f [(1)(3)] = 0.3

so

R =





1.4 .8 .3
.8 1.4 .3
.3 .8 1.4



 .

1.4-8 Noting that E[f [t+ 1]y[t]] = 0, since future values of noise are uncorrelated with present values of the output,
we have

σ2
y = E[y[t+ 1]y[t+ 1]] = E[(f [t+ 1]− a1y[t])(f [t+ 1]− a1y[t])] = σ2

f + a2
1σ

2
y,

from which σ2
y(1− a1)

2 = σ2
f , and the result follows.

1.4-9 Starting from the derivation of the Yule-Walker equations,

E

[
p
∑

k=0

aky[t− k]y[t− l]
]

= E[f [t]y[t− l]]

set l = 0, obtain

E

[
p
∑

k=0

aky[t− k]y[t]
]

= E[f [t]y[t]] = σ2
f .

The result follows by conjugating both sides of the equation.

1.4-10 (Second-order AR)

(a) From the Yule-Walker equations,

[
ryy[0] ryy[1]
ryy[1] ryy[0]

] [
−a1

−a2

]

=

[
ryy[1]
ryy[2]

]

so that

[
−a1

−a2

]

=

[
ryy[0] ryy[1]
ryy[1] ryy[0]

]−1 [
ryy[1]
ryy[2]

]

=
1

ryy[0]2 − ryy[1]2

[
ryy[0] −ryy[1]
−ryy[1] ryy[0]

] [
ryy[1]
ryy[2]

]

=
1

ryy[0]2 − ryy[1]2

[
ryy[1](ryy[0]− ryy[2])
ryy[0]ryy[2]− ryy[1]2

]

.

4 Introduction

(b) Using y[t+ 1] = f [t+ 1]− a1y[t]− a2y[t− 1] we have

ryy[1] = E[y[t]y[t+ 1]] = E[y[t](f [t+ 1]− a1y[t]− a2y[t− 1])] = −a1σ
2
y − a2ryy[1],

so that (1 + a2)ryy[1] = −a1σ
2
y, from which the result follows. Also,

ryy[2] = E[y[t]y[t+ 2]] = E[y[t](f [t+ 2]− a1y[t+ 1]− a2y[t])] = −a1ryy[1]− a2σ
2
y.

Substituting from the previous result for ryy[1] we have

ryy[2] = −a1

(−a1

1 + a2
σ2

y

)

− a2σ
2
y,

from which the result follows.

(c) By (1.76) we have

σ2
f = ryy[0] + a1ryy[1] + a2ryy[2].

Substituting for ryy[1] and ryy[2], we have

σ2
f = σ2

y(1− a2
1

a+ a2
+

a2
1a2

1 + a2
− a2

2).

Solving for σ2
y, the result follows.

(d) The solution of the difference equation is of the form

ryy[k] = c1p
k
1 + c2p

k
2 ,

where c1 and c2 are found according to the initial conditions:

ryy[0] = c1 + c2

ryy[1] = c1p1 + c2p2

from which we obtain

[
c1
c2

]

=

[
1 1
p1 p2

]−1 [
1

−a1/(1 + a2)

]

σ2
y =

σ2
y

(p2 − p1)(1 + a2)

[
p2(1 + a2) + a1

−p1 − p1a2 − a1

]

1.4-11 Use the results of the previous problem. The computations are represented in the following Matlab function:

Algorithm 1.1 AR(2) coefficients to autocorrelation

function [sigma2,r1,r2] = ator2(a1,a2,sigmaf2)

% function [sigma2,r1,r2] = ator2(a1,a2,sigmaf2)

% Given the coefficients from a 2nd-order AR model

% y[t+2] + a1 y[t+1] + a2 y[t] = f[t+2],

% where f has variance sigmaf2, compute sigma_y^2, r[1], and r[2].

sigma2 = sigmaf2* (1+a2)/((1-a2)*((1+a2)^2 - a1^2));

r1 = -sigma2*a1/(1+a2);

r2 = sigma2*(a1^2/(1+a2) - a2);

Then the answer is provided by

a1 = -.7; a2=.12; sigmaf2 = .1;

[sigmay2,r1,r2] = ator2(a1,a2,sigmaf2)

yielding

σ2
y = 0.1665 r1 = 0.1041 r2 = 0.0529

5

1.4-12 The filter output is x[t] =
∑

m y[t−m]h[m]. The average power is

E[x[t]x[t]] = E

[
∑

m

y[t−m]h[m]
∑

n

y[t− n]h[n]

]

=
∑

m

∑

n

h[m]E[y[t−m]y[t− n]]h[n]

= h
TRh.

1.4-13 (a) State variable form:

A =

[
0 1

−0.56 1.5

]

b =

[
0
1

]

c =

[
−0.56
−1.5

]

z−1
6

y[t]f [t]

1.5

−0.56

1

−3

w[t − 2]w[t − 1]

6 z−1

(b) State variable form:

A =

[
0 1

−0.56 1.5

]

b =

[
0
1

]

c =

[
−6.5
−3.5

]

z−1
6

y[t]

−5

f [t]

1.5

−0.56

1

w[t − 2]w[t − 1]

6 z−1
−6

1.4-14 Observer canonical form:

(a) Assume for notational ease that p = q. We have

Y (z)

p
∑

k=0

akz
−k =

p
∑

k=0

bkz
−k

or

Y (z) + a1z
−1Y (z) + · · ·+ apz

−pY (z) = b0F (z) + b1z
−1F (z) + · · ·+ bpz

−pF (z).

Solving for the first Y (z) on the LHS we have

Y (z) = b0F (z) + [b1F (z)− a1Y (z)]z−1 + · · ·+ [bpF (z)− apY (z)]z−p

6 Introduction

6

bp

−a p

z−1
6

−a p−1

bp−1

z−1
6

b1

−a1

z−1
6

b0

xp [t]
y[t]

x1[t]xp−1[t]

(b)

(c) Recognizing that y[t] = x1[t] + b0f [t], the delay outputs can be written as

x1[t+ 1] = x2[t] + b1f [t]− a1(x1[t] + b0f [t])

x2[t+ 1] = x3[t] + b2f [t]− a2(x1[t] + b0f [t])

...

xp[t+ 1] = bpf [t]− ap(x1[t] + b0f [t])

and the output is y[t] = x1[t] + b0f [t]. These equations can be expressed as








x1[t+ 1]
x2[t+ 1]

...
xp[t+ 1]








=










−a1 1 0 · · · 0
−a2 0 1 · · · 0

...
−ap−1 0 0 · · · 1
−ap 0 0 · · · 0

















x1[t]
x2[t]

...
xp[t]








+








b1 − a1b0
b2 − a2b0

...

bp − apb0







f [t]

y[t] =
[
1 0 · · · 0

]
x[t] + b0f [t].

z−1
6 z−1

6 z−1
6

xp [t] xp−1[t]

4

7 6

y[t]
x1[t]

3

−1

2

(d)

A =





−1 1 0
6 0 1
7 0 0



 b =





1
16
14



 c =





1
0
0



 d = 2

1.4-15 Parallel form:

7

z−1

p1

z−1

6

6

p2

6f [t]

z−1

pp

6

N1

N2

Np

y[t]

x1[t]

x2[t]

xp [t]

(a)

(b) Each state variables satisfies xi[t+ 1] = f [t] + pix[t]. The output is

y[t] = N1x1[t] +N2x2[t] + · · ·+Npxp[t].

The result follows. (If b0 6= 0, then there is a direct line of weight b0 from input to output.)

(c) PFE: Use the form usually associated with Laplace transforms:

H(z) =
1− 2z−1

1 + .5z−1 + .06z−2
=

(z2 − 2z)

(z + .2)(z + .3)
= 1 +

k1

z + .2
+

k2

z + .3

where k0 = 1 and, by CUPI,

k1 = 4.4 k2 = −6.9.

Σ

Σ
y[t]

−.3

Σ

z−1

−6.9

x1[t]

x2[t]

−.2

z−1

f [t]

1

4.4

A =

[
−.2

−.3

]

b =

[
1
1

]

c =

[
−22
23

]

d = 1

(d) Repeated roots:

H(z) =
z2 + 1

(z − .2)(z − .5)
= 1 +

1.6667

z − .5 +
1.25

(z − .5)2
+
.5333

z − .2

8 Introduction

z−1 Σ

Σ

0.5

Σ

0.2

Σ

.53

z−1

z−1

0.5

1.7

f [t] y[t]

x1[t] x2[t]

x3[t]

1.25

(e)

(f) With the state assignment as shown above, the state equations are

x1[t+ 1] = 0.5x1[t] + f [t]

x2[t+ 1] = 0.5x2[t] + x1[t]

x3[t+ 1] = 0.2x3[t] + f [t].

which has

A =





.5 0 0
1 5 0
0 0 .2



 b =





1
0
1



 c =





1.667
1.25
.533





1.4-16 From (1.26), the transfer function of (1.21) is

H(z) =
Y (z)

F (z)
= (cT (zI −A)−1

b + d).

Taking the Z-transform of (1.22),

zZ(z) = AZ(z) + bF (z)

Y (z) = c
TZ(z) + dF (z)

Solving the first for Z(z), we have Z(z) = (zI −A)−1bF (z), which, upon substitution into the second gives

Y (z) = c
T (zI −A)−1

bF (z) + dF (z),

so the new transfer function is

Hnew(z) = c
T (zI −A)−1

b + d

Now substituting

A = T−1AT b = T−1
b c = TT

c

we get

c
T (zI −A)−1

b = c
TT [zI − T−1AT]−1T−1

b = c
TT [T−1(zI −A)T]−1T−1

b

= c
TTT−1(zI −A)TT−1

b = c
T (zI −A)−1

b,

so the transfer functions are the same.

1.4-17 Solution of the state equation:

(a) (Time-invariant system) We observe that, starting from a known initial state x[0],

x[1] = Ax[0] + bf [0]

x[2] = Ax[1] + bf [t]

= A(Ax[0] + bf [0]) = A2x[0] +Abf [0] + bf [1]

= A2
x[0] +

1∑

k=0

Ak
bf [2− 1− k].

9

Now (the inductive hypothesis) assuming that

x[t] = At
x[0] +

t−1∑

k=0

Ak
bf [t− 1− k].

is true at time k, we have

x[t+ 1] = Ax[t] + bf [t]

= A(At
x[0] +

t−1∑

k=0

Ak
bf [t− 1− k]) + bf [t]

= At+1
x[0] +A

t−1∑

k=0

Ak+1
bf [t− 1− k] + bf [t]

= At+1
x[0] +

t∑

j=1

Aj
bf [t− j] + bf [t] (letting j = k + 1)

= At+1
x[0] +

t∑

j=0

Aj
bf [t− j] + bf [t]

(b) (Time-varying system) Proceeding as before, find

x[t] =

(
t−1∏

i=0

A[i]

)

x[0] +

t−1∑

j=0

(
j
∏

i=1

A[i]

)

b[t− 1− j]f [t− 1− j]

1.4-18 (Interconnection of systems)

(a) (Series.) The idea is shown here:

y1 = cT
1 x1

x1[t + 1] = A1x1[t] + b1 f [t] x2[t + 1] = A2x2[t] + b2y1[t]
y2 = cT

2 x2

The input to the second block it y1[t] = cT
1 x1[t].

[
x1[t+ 1]
x2[t+ 1]

]

=

[
A1 0
b2c

T
1 A2

] [
x1[t]
x2[t]

]

+

[
b1

0

]

f [t]

y[t] = y2[t] =
[
0 cT

2

]
[
x1[t]
x2[t]

]

so

A =

[
A1 0
b2c

T
1 A2

]

b =

[
b1

0

]

c
T =

[
0 cT

2

]
.

(b) (Parallel.)

y1 = cT
1 x1

x1[t + 1] = A1x1[t] + b1 f [t]

x2[t + 1] = A2x2[t] + b2 f [t]
y2 = cT

2 x2

[
x1[t+ 1]
x2[t+ 1]

]

=

[
A1

A2

] [
x1[t]
x2[t]

]

+

[
b1

b2

]

f [t]

y[t] =
[
cT
1 cT

2

]
[
x1[t]
x2[t]

]

10 Introduction

so

A =

[
A1

A2

]

b =

[
b1

b2

]

c
T =

[
cT
1 cT

2

]

(c) (Feedback.)

y1 = cT
1 x16

x1[t + 1] = A1x1[t] + b1 f [t]

x2[t + 1] = A2x2[t] + b2 f [t]
y2 = cT

2 x2

g[t]f [t]

Recognizing that the input to the feedback block is

f2[t] = y1 = c
t
x1

and that the input to the feedforward block is

g[t] = f [t] + y2[t] = f [t] + c
T
x2[t],

the dynamics are
[
x1[t+ 1]
x2[t+ 1]

]

=

[
A1 b1c

T
2

b2c
T
1 A2

] [
x1[t]
x2[t]

]

+

[
b1

0

]

f [t]

y[t] = y1[t] =
[
cT
1 0

]
[
x1[t]
x2[t]

]

.

1.4-19 The transfer function of the first system is

H2(z) =
[
cT qT

]
[

zI −
[
A A1

0 A2

]]−1 [
b

0

]

Then [

zI −
[
A A1

0 A2

]]−1

=

[
zI −A −A1

0 zI −A2

]−1

=

[
(zI −A)−1 (zI −A)−1A1(zI −A2)

−1

0 (zI −A2)
−1

]

(See section 4.12 on inverses of block matrices.) Then

H2(z) =
[
cT qT

]
[
(zI −A)−1 (zI −A)−1A1(zI −A2)

−1

0 (zI −A2)
−1

] [
b

0

]

=
[
cT qT

]
[
(zI −A)−1b

0

]

= c
T (zI−A)−1

b

which is the transfer function as the system (A,b, cT). Computations are similar for the second system.

Since A1 or A2 can take on various dimensions, the dimension of the state variable is not necessarily the same
as the degree of the final transfer function.

1.4-20 Realizations

z−1z−1
6 z−1

6
f [t]

−10

−31

1

3

y[t]

−30

2

(a)

11

(b) After factoring, we see that

H(z) =
z(z + 3)(z + 2)(z + 1)

(z + 5)(z + 3)(z + 1)
=

z(z + 2)

(z + 3)(z + 5)
=

(−1/2)

1 + 3z−1
+

(3/2)

1 + 5z−1

6
y[t]

−5

6

z−1

3/2

x1[t]

x2[t]

−3

z−1

f [t]

6

−1/2

(c) There are two modes in a minimal realization.

1.4-21 From the system
ẋ(t) = Ax + bf(t)

y(t) = c
T
x(t) + df(t),

solve the second for f(t) to obtain

f(t) =
1

d
y(t)− cT

d
x(t). (1.1)

Substituting into the first and re-arranging we find

ẋ(t) = (A− bct

d
)x(t) +

b

d
y(t)

If we now interpret this as a system with input y(t), and output equation given by (1.1), we note that the
system has the form

(A− bct

d
,
b

d
,−cT

d
,
1

d
).

1.4-22 State-space solutions:

(a) Starting from

x(t) = eA(t−τ)
x(τ) +

∫ t

τ

eA(t−τ)Bu(λ) dλ,

we have, using the properties of the matrix exponential,

ẋ(t) = AeA(t−τ)
x(τ) +

∫ t

τ

AeA(t−τ)Bu(λ) dλ+ eA(t−t)Bf(λ)

= Ax(t) +Bf(λ)

(b) We have

x(t) = Φ(t, 0)x(0) +

∫ t

0

Φ(t, λ)B(λ)f(λ)dλ

so that

ẋ(t) = A(t)Φ(t, 0)x(0) +

∫ t

0

A(t)Φ(t, λ)B(λ)f(λ) dλ+ Φ(t, t)B(t)f(t)

= A(t)x(t) +B(t)f(t).

1.4-23 It is straightforward to verify that

x(t) =

[
x1(t)
x2(t)

]

=

[
C sin(t+ θ)
C cos(t+ θ)

]

satisfies the differential equation. The constants C and θ are chosen to match the initial conditions x(0) = x0.

12 Introduction

1.4-24

H(s) =
−2s

s2 + s− 2
=
−(4/3)

s+ 2
+
−(2/3)

s− 1
.

The modes occur at s = −2 and s = 1, and A has the eigenvalues −2 and 1.

1.4-25 Simply perform the division 1
1−x

.

1.4-26 (System identification)

(a)

Hc(s) =
b/(s(s+ a))

1 + b/(s(s+ a))
=

b

s(s+ a) + b
=

1

1 + (a/b)s+ (1/b)s2
.

(b) We have

Hc(jω) =
1

(1− ω2/b) + (aω/b)j
so

|Hc(jω)|2 =
1

(1− ω2/b)2 + (aω/b)2
=

1
1
b2

[(b− ω2)2 + (aω)2]

from which A(jω) follows. Also

tan argHc(jω) =
−aω/b

1− ω2/b2
= − aω

b− ω2

so that tan arg 1
Hc(jω)

= aω
b−ω2 .

(c) From the equations of the previous part, we have

A(jω)b =
√

(b− ω2)2 + (aω)2

=
√

(aω/ tanφ(jω))2 + (aω)2

= aω
√

1/(tanφ(jω))2 + 1.

We recognize an equation of the form

[

A(jω) −ω
√

1/(tanφ(jω))2 + 1
]
[
b
a

]

= 0.

From tanφ(jω) = aω
b−ω2 we also obtain the equation

b tanφ(jω)− ω2 tanφ(jω) = aω,

from which we recognize an equation of the form

[
tanφ(jω) −ω

]
[
b
a

]

= ω2 tanφ(jω).

Since these are true for any ω, we make measurements at several frequencies, and stack up the equations
to obtain the over-determined set of equations.

1.4-27
Gyy(ω) = |Y (ω)|2 = Y (ω)Y (ω)

=
∑

l

y[l]e−jωl
∑

k

y[k]ejωk =
∑

k

∑

l

y[l]y[k]e−jω(l−k)

=
∑

k

ρyy[l − k]e−jω(l−k) ∀l

=
∑

k

ρyy[k]e−jωk.

1.4-28
∑

t

|y[t]|2 =
∑

t

y[t]
1

2π

∫ π

−π

Y (ω)e−jωt dω

=
1

2π

∫ π

−π

Y (ω)
∑

t

y[t]e−jωt dω =
1

2π

∫ π

−π

Y (ω)Y (ω) dω =
1

2π

∫ π

−π

Gyy(ω) dω.

13

1.4-29 First the hint:

N∑

n=1

n∑

m=1

f(n−m) =
∑

n=m

f(0) +
∑

n−m=−1

f(−1) +
∑

n−m=1

f(1) + · · ·+
∑

n−m=−(N−1)

f(−(N − 1))+

∑

n−m=N−1

f(N − 1)

The first sum on the right has N terms, the next two sums have N − 1 terms, and so on to the last two sums,
which have only one term each. This can written as

N∑

n=1

N∑

m=1

f(n−m) =

N−1∑

l=−N+1

(N − |l|)f(l).

Now for the problem:

lim
N→∞

E




1

N

∣
∣
∣
∣
∣

N∑

n=1

y[n]e−jωn

∣
∣
∣
∣
∣

2


 = lim
N→∞

1

N

N∑

n=1

N∑

m=1

E[y[n]y[m]]e−jω(n−m)

= lim
N→∞

1

N

N−1∑

l=1−N

(N − |l|)ryy[l]e−jωl

=
∞∑

l=−∞
ryy[l]e−jωl − lim

N→∞

1

N

N−1∑

l=1−N

|l|ryy[l]e−jωl.

Under the assumption (1.39), the second sum vanishes in the limit, leaving the PSD.

1.4-30 (Modal analysis)

(a) Since the data are given as third-order, the following set of equations can be used to find the coefficients
of the system:









−0.1 −0.25 −0.32
0.0222 −0.1 −0.25
−0.0006 0.0222 −0.1

0.0012 −0.0006 0.0222
−0.0005 0.0012 −0.0006













a1

a2

a3



 =









−0.0222
0.0006
−0.0012

0.0005
−0.0001









from which the solution is




a1

a2

a3



 =





0.175523
0.00351197
0.0117816



 ,

corresponding to the system equation

y[t+ 3] + (.1755)y[t+ 2] + (.00351197)y[t+ 1] + (.0117816)y[t] = 0.

The roots are at

[p1, p2, p2] = [−.297, 0.0608± j.1896],

as shown by the Z-plane plot.

14 Introduction

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Real part

Im
ag

in
ar

y
pa

rt

(b) An equation to find the coefficients is





1 1 1
p1 p2 p3

p2
1 p2

2 p2
3









c1
c2
c3



 =





y[0]
y[1]
y[2]





from which
[c1, c2, c3] =

[
0.5015 −0.0907− 1.0813j −0.0907 + 1.0813j

]

1.4-31 By a trigonometric identity,

y[t] = A cosω1t cos θ1 +A sinω1t sin θ1 +B cosω2t cos θ2 +B sinω2t sin θ2

Identify x1 = A cos θ1, y1 = A sin θ1, x2 = B cos θ2 and y2 = B sin θ2 as unknowns. Then from measurements
at t = t1, t2, . . . , tN the following equations can be obtained:








cosω1t1 sinω1t1 cosω2t1 sinω2t1
cosω1t2 sinω1t2 cosω2t2 sinω2t2

...
cosω1tN sinω1tN cosω2tN sinω2tN














x1

y1
x2

y2







=








y[t1]
y[t2]

...
y[tN]







.

By solving this over-determined set of equations, determine x1, x2, y1 and y2, after which

A =
√

x2
1 + y2

1 B =
√

x2
2 + y2

2

θ1 = tan−1(y1/x1) θ2 = tan−1(y2/x2)

1.6-32 Simply multiply and simplify, and show that the product is the identity:

R−1R =
1

1− ρ2





1
σ2
1

−ρ
σ1σ2

−ρ
σ1σ2

1
σ2
2



 .

[
σ2

1 σ12

σ12 σ2
2

]

=

[
1 0
0 1

]

1.6-33 For notational convenience, we will deal with the case when µ1 = µ2 = 0. In the exponent of (1.47) we have

−1

2
w

TR−1
w = − 1

2(1− ρ2)

[
w1 w2

]

[
1

σ2
1

−ρ
σ1σ2

−ρ
σ1σ2

1
σ2
2

] [
w1

w2

]

= − 1

2(1− ρ2)

[
w2

1

σ2
1

− 2ρw1w2

σ1σ2
+
w2

2

σ2
2

]

.

In the coefficient in front we have

|R|1/2| =
√

σ2
1σ

2
2 − σ2

12 = σ1σ2

√

1− σ2
12/(σ1σ2) = σ1σ2

√

1− ρ2.

These lead to (1.51).

15

1.6-34 (a) Y ∼ N (µx, σ
2
x + σ2

n)

(b) The correlation coefficient is

ρ =
σx

√
σ2

x + σ2
y

.

From (1.53), an estimate of X given the measurement Y = y is

x̂ = µx +
σx

σy
ρ(y − µy) = µx +

σx√
σ2

x + σ2
n

ρ(y − µy) = µx +
σ2

x

σy
x + σ2

y

.

When σ2
n � σ2

x, then we have approximately

x̂ ≈ µx,

and the variance is ≈ σ2
x. In this case, when the noise is too high, the best thing to do is ignore the

measurement and use the prior knowledge about X, and we are hardly less certain about the variance
than we were before the measurement. When σ2

x � σ2
n, then we have approximately

x̂ ≈ µu + ρ(y − µy) ≈ y + µx − µy,

so that we linearly adjust the mean be the difference between the measured value and the expected value
of Y . The variance is approximately the variance in the noise.

1.6-35 Z ∼ N (aµx + bµy, a
2σ2

x + b2σ2
y + 2abρσxσy).

1.6-36 E[Y] = E[σX + µ] = µ. To determine the variance, it is most convenient to assume µ = 0. Then

var(Y) = E[(σX)2] = σ2.

1.6-37 (a) ML estimate: Maximizing f(x1, x2, . . . , xn|µ, σ2) is equivalent to maximizing log f(x1, x2, . . . , xn|µ, σ2),
since log is an increasing function. Taking the derivative with respect to µ of log f(x1, x2, . . . , xn|µ, σ2)
and equating to zero we obtain

∂

∂µ
log f(x1, x2, . . . , xn|µ, σ2) = − 2

2σ2

n∑

i=1

(xi − µ) = 0.

Solving this for µ, and calling the result µ̂ — the estimate of µ, we obtain

µ̂ =
1

n
xi.

(b) Eµ̂ = µ. The estimate is unbiased.

(c)

var(µ̂) = E[µ̂2]− E[µ̂]2 = E[
1

n2

n∑

i=1

n∑

j=1

xixj]− µ2

=
1

n2





n∑

i=1

E[x2
i] +

∑

i6=j

E[xixj]



− µ2 =
1

n2

[
n(σ2 + µ2) + (n2 − n)µu]− µ2

= σ
2

n
.

The variance of the estimate of the mean goes down as 1/n.

(d) Taking the derivative of ln f and equating to zero we have

∂

∂σ2 ln f =
∂

∂σ2 −
n

2
ln 2π − n

2
lnσ2 − 1

2σ2

n∑

i=1

(xi − µ)2

= − n

2σ2
+

1

2σ4

n∑

i=1

(xi − µ)2 = 0.

Denoting the value of σ2 which solves this as σ̂2, we have

σ̂2 =
1

n

n∑

i=1

(xi − µ)2

16 Introduction

1.7-38 (a) f(x3, x1|x2) = f(x3|x1, x2)f(x1|x2) = f(x3|x2, f(x1|x2)

(b)
rx(t3, t1) = E[X(t3)X(t1)] = E[E[X(t3)X(t1)|X(t2)]]

= E[E[X(t3)|X(t2)]E[X(t1)|X(t2)]] = E[(ρ2,3
σ3

σ2
X2)(ρ1,2

σ1

σ2
X2)]

=
ρ2,3ρ1,2σ1σ

2
2σ3

σ2
2

=
rx(t3, t2)rx(t2, t1)

rx(t2, t2)
.

1.7-39 If Ap = p, then p must be the eigenvector of A corresponding to the eigenvalue 1, scaled to have the sum of
its elements equal to 1. The vector

p =





0.571988
0.544086
0.613841



 ,

obtained using the eig function of Matlab is the solution.

1.8-40 Assume to the contrary that
√

3 is rational, √
3 =

n

m
,

where the fraction is expressed in reduced terms. Then 3m2 = n2, so n2 must be a multiple of three. This
implies that n must be a multiple of three, for if n = 2k + 1 or n = 2k + 2, then n2 is not a multiple of three.
We thus obtain

3m2 = (3k)2 = 9k2,

or 3k2 = m2, or √
3 =

m

k
.

But now the numerator and denominator are smaller than before, which contradicts our assumption the fraction
n/m is in reduced form. (Alternatively, we could observe that the process could be iterated an indefinite number
of times, reaching an absurd conclusion. This is the reductio ad absurdium argument.)

1.8-41 Suppose to the contrary that there are a finite number n of primes in the list P = {2, 3, 5, . . . , pn}. Form the
number

m = 2 · 3 · 5 · · · · · p1 + 1

(the product of all the presumed primes, plus 1). Then m is not divisible by any of the primes in the set P thus
m is either a product of primes, or it is prime. If m is prime, then since m is larger than any of the numbers
in the original list we have found a new prime, contradicting the assumption that there are a finite number of
primes.

If m is the product of two primes, write m = qr, where q is prime. Since none of the numbers in P divides m,
but q does, it must be a new prime, again yielding a contradiction.

1.8-42 If m = 2k + 1 for some integer k (i.e., m is odd) then

m2 = 4k2 + 4k + 1,

an odd number. If m = 2k, then
m2 = 4k2,

an even number.

1.8-43 It seems plausible that
n∑

i=0

2i = 2n+1 − 1.

This is easily verified for small n. Taking this now as an inductive hypothesis under n, we try it for n+ 1:

n+1∑

i=0

2i =
n∑

i=0

2i + 2n+1 = (2n+1 − 1) + 2n+1

= 2(2n+1)− 1 = 2n+2 − 1.

1.8-44 Plausible rule:
n∑

i=1

(2i− 1) = n2.

17

This may be easily verified for small n. Taking this as the inductive hypothesis for n, we try it for n+ 1:

n+1∑

i=1

(2i− 1) =
n∑

i=1

(2i− 1) + 2(n+ 1)− 1

= n2 + 2(n+ 1)− 1 = n2 + 2n+ 1 = (n+ 1)2.

1.8-45 With some experimentation, it appears that

n∑

i=1

1

i2 + i
=

n

n+ 1
.

Taking this as the inductive hypothesis, we find for n+ 1

n+1∑

i=1

1

i2 + i
=

n∑

i=1

1

i2 + i
+

1

(n+ 1)2 + n+ 1
=

n

n+ 1
+

1

n2 + 3n+ 2

=
n+ 1

n+ 2
.

1.8-46 The result is immediate for n = 1. Assume true for n. Then

(n+ 1)3 − (n+ 1) = n3 + 3n2 + 2n = (n3 − n) + (3n2 + 3n).

By hypothesis, 3|n3 − n, and it is clear that 3|(3n2 + 3n), so 3 must divide their sum.

1.8-47 The result is straightforward to verify for small n. Taking the stated result as the inductive hypothesis, we
have

(

n+ 1

k

)

+

(

n+ 1

k

)

=

(

n

k

)

+

(

n

k − 1

)

+

(

n+ 1

k − 1

)

=
n!

k!(n− k)! +
n!

(k − 1)!(n− k + 1)!
+

(n+ 1)!

(k − 1)!(n− k + 2)!

=
n!(n− k + 1)(n− k + 2) + kn!(n− k + 2) + k(n+ 1)!

k!(n− k + 2)!
=
n!(n2 + 2n+ 2)

k!(n− k + 2)!

=
(n+ 2)!

k!(n− k + 2)!

=

(

n+ 2

k

)

.

1.8-48 The result is clear when n = 0 and n = 1. Taking

n∑

k=0

(

n

k

)

= 2n.

as the inductive hypothesis, we have

n+1∑

k=0

(

n+ 1

k

)

=

n∑

k=0

(

n+ 1

k

)

+

(

n+ 1

n+ 1

)

=
n∑

k=1

(

n+ 1

k

)

+

(

n+ 1

0

)

+ 1

=
n∑

k=1

(

n

k

)

+

(

n

k − 1

)

+ 1 + 1 (using the previous problem)

= (2n − 1) +

n−1∑

j=0

(

n

j

)

+ 1 + 1 (using the inductive hypothesis)

= (2n − 1) + (2n −
(

n

n

)

) + 1 + 1

= 2n + 2n = 2n+1.

Another approach is to using the binomial theorem in the next problem, with x = y = 1.

18 Introduction

1.8-49 Taking the binomial theorem as the inductive hypothesis, we have

(x+ y)n+1 = (x+ y)(x+ y)n = (x+ y)
n∑

k=0

(

n

k

)

xkyn−k

=

n∑

k=0

(

n

k

)

xk+1yn−k +

n∑

k=0

(

n

k

)

xkyn−k+1

=

n+1∑

j=1

(

n

j − 1

)

xjyn−j+1 +
n∑

k=1

(

n

k

)

xkyn−k+1 + yn+1 (let j = k + 1 in the first sum)

=

n+1∑

k=1

[(

n

k − 1

)

+

(

n

k

)]

xkyn−k+1 + yn+1

=

n+1∑

k=1

(

n+ 1

k

)

xkyn−k+1 + yn+1 (using (1.82)

=

n+1∑

k=0

(

n+ 1

k

)

xkyn−k+1.

1.8-50 Taking the sum as the inductive hypothesis, we have

n+1∑

k=1

k2 =
n∑

k=1

k2 + (n+ 1)2 =
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2

=
2n3 + 9n2 + 13n+ 6

6
=

(n+ 1)(n+ 2)(2(n+ 1) + 1)

6
.

1.8-51
n+1∑

k=1

rk =

n∑

k=1

rk + rn+1 =
rn+1 − 1

r − 1
+ rn+1 =

rn+2 − 1

r − 1
.

1.8-52 Let pn =
∏n

i=1
2i−1
2i

. Then the inductive hypothesis can be stated as

1√
4n+ 1

< pn ≤ 1√
3n+ 1

.

For the inductive step, we must show that

1
√

4(n+ 1) + 1
< pn

2(n+ 1)− 1

2(n+ 1)
<

1
√

3(n+ 1) + 1

The inequality on the left is established by using the fact that under the inductive hypothesis

1√
4n+ 1

< pn.

Then we must show that
1√

4n+ 5
<

1√
4n+ 1

2n+ 1

2n+ 2
.

Cross-multiplying and squaring, this is equivalent to showing that

(2n+ 1)2(4n+ 5) > (2n+ 2)2(4n+ 1).

Expanding both sides, this is equivalent to showing that

16n3 + 36n2 + 24n+ 5 > 16n3 + 36n2 + 24n+ 4

which is equivalent to 1 > 0. Hence the left inequality is established.

By the inductive hypothesis,

pn ≤ 1√
3n+ 1

.

19

To establish the right inequality, we must show that

1√
3n+ 1

2n+ 1

2n+ 2
≤ 1√

3n+ 4

Squaring and cross-multiplying, this is equivalent to showing that

(3n+ 4)(2n+ 1)2 < (3n+ 1)(2n+ 2)2,

Which is equivalent to showing that

4n2 + 5n+ 1 > 0,

which is true for any positive n.

1.8-53 This is clearly true for n = 1. Assuming true for n, consider xn+1−yn−1. By long division it is straightforward
to show that

xn+1 − yn+1

x− y = xn + yn +
yxn − xyn

x− y

= xn + yn +
xy(xn−1 − yn−1)

x− y
By the inductive hypothesis, the quotient on the right divides with no remainder, so the result is proved.

1.9-54

j state yj (output)

0 0001 1
1 1000 1
2 1100 0
3 0110 0
4 0011 0

5 0001 1
...

...
...

1.9-55

?

-

-

?��

yj

D D D

h+ h+

- -

D h+ Dh+D

6

- -- ---

6

yj

(a)

(b) For the first realization,

j state yj (output)

0 001 1
1 100 1
2 110 0
3 011 0

4 001 1
...

...
...

For the second realization,

j state yj (output)

0 001 1
1 111 1
2 100 0
3 010 0

4 001 1
...

...
...

20 Introduction

There are four states.

1.9-56

�

-

-

?

yj

D D D

h+

- -

D Dh+D -- ---

6

yj

(a)

(b) First realization:

j state yj (output)

0 001 1
1 100 0
2 010 1
3 101 1
4 110 1
5 111 0
6 011 0

7 001 1
...

...
...

Second realization:

j state yj (output)

0 001 1
1 110 0
2 011 1
3 111 1
4 101 1
5 100 0
6 010 0

7 001 1
...

...
...

1.9-57 Massey:

(a) Hand computations:

Initialize: L = 0, c = 1, p = 1, dm = 1
n = 0 d = 0, so s = 2
n = 1 d = 0, so s = 3
n = 2 d = 0, so s = 4
n = 3 d = 1

Update with length change:
t = 1
c = 1 +D4

p = 1
dm = 1
s = 1
L = 4

n = 4 d = 0, so s = 2
n = 5 d = 1

Update with no length change:
t = 1 +D4

c = 1 +D4 +D2

s = 3
n = 6 d = 0, so s = 4

21

(b) The Matlab operations can be summarized as

y = [0 0 0 1 0 1 0]

c = massey(y)

c = [1 0 1 0 1]

1.9-58

1.9-59 LFSR and polynomial division:

(a) Given that the output is known from time y0, by (1.63) we have

p
∑

i=0

ciyj−i = 0 ∀j ≥ p. (1.2)

Now with C(D) = 1 + c1D + · · ·+ cpD
p and Y (D) = y0 + y1D + · · · , the product is

C(D)Y (D) = y0 +D(c1y0 + y1c0) + · · ·+Dp−1
p−1
∑

i=0

ciyp−1−i +Dp
p
∑

i=0

ciyp−i+

Dp+1
p
∑

i=0

ciyp+1−i + · · ·

By (1.2), all the coefficients from Dp upward are zero. We thus have

Z(D) = y0 +D(c1y0 + y1c0) + · · ·+Dp−1
p−1
∑

i=0

ciyp−1−i

= z0 + z1D + · · ·+ zp−1D
p.

(b) Equating coefficients, we have

z0 = y0

z1 = c1y0 + c0y1

z2 = c2y0 + c1y1 + c0y2

...

zp−1 = cp−1y0 + cp−2y1 + · · ·+ c0yp−1,

which leads to the indicated matrix equation.

1.9-60 The Z(D) coefficients can be determined from




1 0 0
0 1 0
1 0 1









1 = y0
0 = y1
0 = y2



 =





z0
z1
z2



 =





1
0
1





Then by direct long division,

Y (D) = 1 +D3 +D5 +D6 +D7 +D10 +D12 +D13 + · · ·

which corresponds to the series
{1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, . . .}.

It is straightforward to verify that this is the output of an LFSR with coefficients C(D) and initial conditions
{0, 0, 1}.
Incidentally, the long division can be computed easily in Mathematica using a command such as

PolynomialMod[Normal[Series[(1+d^2)/(1+d^2+d^3),{d,0,15}]],2]

which provides up to the d14 term.

1.9-61 The sequence is {1, 0, 0, 1, 1, 1, 0}. We recognize that the cyclic autocorrelation is the cyclic convolution of
y[t] and y[−t], and may be computed using an FFT. Matlab code for this purpose, and the results of the
computation, are shown below.

Algorithm 1.2 Cyclic autocorrelation

22 Introduction

function plotlfsrautoc(y)

% plot the autocorrelation of the output of an LFSR

N = length(y);

yf = fft(y);

yrf = fft(y(N:-1:1)); % time-reversed

zf = yf .* yrf; % multiply

z = real(ifft(zf));

% now shift, so the zero lag is in the middle

x = [z(N- (N-1)/2:N) z(1:(N-1)/2)]

subplot(2,2,1);

plot(0:N-1, x)

set(gca,’XTickLabel’,[-(N-1)/2:(N-1)/2]);

xlabel(’lag’)

ylabel(’cyclic autocorrelation’)

−3 −2 −1 0
1.5

2

2.5

3

3.5

4

4.5

lag

cy
cl

ic
 a

ut
oc

or
re

la
tio

n

