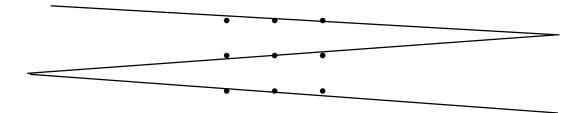


Introduction to Chemistry

Section 1.1 Evolution of Chemistry


- 2. Thales stated *water* was the single element that composed earth, air, and space.
- 4. Aristotle stated *air, earth, fire, water,* and *ether* were five basic elements responsible for everything in nature.
- 6. Step 2 of the scientific method is to *analyze the data* and *propose a tentative hypothesis* to explain the experimental observations.
- 8. *Robert Boyle* is generally considered the founder of the scientific method.
- 10. A *hypothesis* is an initial proposal that is tentative, whereas a *theory* is a proposal that has been extensively tested and verified.
- 12. (a) is a *natural law* because the relationship is stated as an equation.
 (b) is a *scientific theory* because the number of molecules cannot be counted.
 (c) is a *natural law* because gas temperature and pressure can be measured.
 (d) is a *scientific theory* because it is a model that explains the atom.

Section 1.2 Modern Chemistry

- 14. Antoine Lavoisier is considered the founder of modern chemistry.
- 16. *Agriculture* and *medicine* are industries in which chemistry plays a crucial role. Other industries in which chemistry plays an important role include the *pharmaceutical, electronics, paper, construction,* and *petrochemical* industries.

Section 1.3 *Learning Chemistry*

18. A solution to the nine-dot problem using three straight lines is shown below; the unconscious assumption regards the angle of the lines and the size of the dots.

Challenge Exercises

20. By staring at the point where the blocks intersect, we can "flip" the image and view the blocks as stacking upward, or stacking downward.

CHAPTER

PS

Prerequisite Science Skills

Section PSS.1 Measurements

2. The diameter of a 5¢ nickel coin is approximately 2 cm.

4.	<u>Unit</u>	<u>Quantity</u>	<u>Unit</u>	<u>Quantity</u>
	meter liter	length volume	kilogram millisecond	mass time

- 6. (b) 2.05 cm and (c) 2.00 cm each have an uncertainty of \pm 0.05 cm.
- 8. (d) 25.000 g has a mass uncertainty of \pm 0.001 g; thus, an electronic balance.
- 10. (b) 25.0 mL and (c) 25.5 mL each have an uncertainty of \pm 0.5 mL.

Section PSS.2 Significant Digits

12.	(a) (b) (c) (d)	5000 g	<u>Significant Digits</u> 1 significant digit 1 significant digit 1 significant digit 1 significant digit
14.		$\frac{\text{Measurement}}{5.0 \text{ cm}} \\ 5.05 \text{ g} \\ 5.02 \times 10^{-1} \text{ mL} \\ 1.0 \times 10^{-2} \text{ s} \\ \end{cases}$	Significant Digits 2 significant digits 3 significant digits 3 significant digits 2 significant digits
16.	(a) (b) (c) (d)	$\frac{\text{Measurement}}{0.5 \text{ cm}} \\ 0.50 \text{ g} \\ 1.00 \times 10^1 \text{ mL} \\ 1.000 \times 10^3 \text{ s} \\ \end{array}$	Significant Digits 1 significant digit 2 significant digits 3 significant digits 4 significant digits

Section PSS.3 Rounding Off Nonsignificant Digits

18.	(a) (b) (c) (d)	<u>Example</u> 20.155 0.204 500 2055 0.2065	Rounded Off 20.2 0.205 2060 (2.06 × 10 ³) 0.207
20.	(a) (b) (c) (d)		$\frac{\text{Rounded Off}}{1.45 \times 10^{1}}$ 1.46×10^{2} 1.51×10^{-3} 1.50×10^{-4}

Section PSS.4 Adding and Subtracting Measurements

22.	$\begin{array}{l} 0.4 \ g + 0.44 \ g + 0.444 \ g \ = \ 1.284 \ g \\ 15.5 \ g + 7.50 \ g \ + \ 0.050 \ g \ = \ 23.050 \ g \end{array}$	rounds to 1.3 g rounds to 23.1 g
24.	 242.197 g - 175 g = 67.197 g $27.55 g - 14.545 g = 13.005 g$	rounds to 67 g rounds to 13.01 g

Section PSS.5 Multiplying and Dividing Measurements

26.	(c)	$3.65 \text{ cm} \times 2.10 \text{ cm} = 7.665 \text{ cm}^2$ $8.75 \text{ cm} \times 1.15 \text{ cm} = 10.0625 \text{ cm}^2$ $16.5 \text{ cm} \times 1.7 \text{ cm} = 28.05 \text{ cm}^2$ $21.1 \text{ cm} \times 20 \text{ cm} = 422 \text{ cm}^2$	<i>rounds to</i> 7.67 cm ² <i>rounds to</i> 10.1 cm ² <i>rounds to</i> 28 cm ² <i>rounds to</i> 400 cm ²
28.		$\frac{26.0 \text{ cm}^2}{10.1 \text{ cm}} = 2.5743 \text{ cm}$	rounds to 2.57 cm
	(b)	$\frac{9.95 \text{ cm}^3}{0.15 \text{ cm}^2} = 66.333 \text{ cm}$	rounds to 66 cm
	(c)	$\frac{131.78 \text{ cm}^3}{19.25 \text{ cm}} = 6.8457 \text{ cm}^2$	<i>rounds to</i> 6.846 cm ²
	(d)	$\frac{131.78 \text{ cm}^3}{19.2 \text{ cm}} = 6.8635 \text{ cm}^2$	<i>rounds to</i> 6.86 cm ²

Section PSS.6 Exponential Numbers

30. (a) $10 \times 10 \times 10 \times 10 = 10^4$ (b) $\frac{1}{10} \times \frac{1}{10} \times \frac{1}{10} \times \frac{1}{10} = (\frac{1}{10})^4 = 10^{-4}$ 32. (a) $3 \times 3 \times 3 \times 3 = 3^4$

(b) $\frac{1}{3} \times$	$\frac{1}{3} \times \frac{1}{3} >$	$\frac{1}{3} =$	$(\frac{1}{3})^4 = 3^{-4}$
--------------------------	------------------------------------	-----------------	----------------------------

34.		Number	Scientific Notation
	(a)	1×10^{12}	1,000,000,000,000
	(b)	1×10^{-22}	$0.000\ 000\ 000\ 000\ 000\ 000\ 000\ 1$

36.		Number	Scientific Notation
	(a)	100,000,000,000,000,000	1×10^{17}
	(b)	0.000 000 000 000 001	1×10^{-15}

38.		Scientific Notation	Number
	(a)	1×10^{0}	1
	(b)	1×10^{-10}	$0.000\ 000\ 000\ 1$

Section PSS.7 Scientific Notation

40.		Ordinary Number	Scientific Notation
	(a)	1,010,000,000,000,000	1.01×10^{15}
	(b)	0.000 000 000 000 456	4.56×10^{-13}
	(c)	94,500,000,000,000,000	9.45×10^{16}
	(d)	0.000 000 000 000 000 019 50	1.950×10^{-17}

- 42. 2.69×10^{19} helium atoms
- 44. 6.64 x 10⁻²⁴ g/helium atom

General Exercises

- 46. $10.00 \text{ mL} (\pm 0.01 \text{ mL})$
- 48. 3.00×10^8 meters per second The velocity must be expressed in scientific notation because the rounded value, 300,000,000 meters per second, has only one significant digit.

50.	126.	457 g + 131.60 g = 258.057 g	rounds to 258.06 g
52.		$\frac{\text{Exponential Number}}{0.170 \times 10^2} \\ 0.00350 \times 10^{-1}$	$\frac{\text{Scientific Notation}}{1.70 \times 10^1} \\ 3.50 \times 10^{-4}$

Challenge Exercises

54. Mass of a neutron =
$$1.6749 \times 10^{-24}$$
 g
Mass of a proton = 1.6726×10^{-24} g
Mass difference: $(1.6749 \times 10^{-24}$ g) - $(1.6726 \times 10^{-24}$ g) = 2.3×10^{-27} g

56. 1 metric ton = $2200 \text{ lb} = 2.200 \times 10^3 \text{ lb}$

1 English ton = $2000 \text{ lb} = 2.000 \times 10^3 \text{ lb}$

Mass difference: $2.200 \times 10^3 \text{ lb} - 2.000 \times 10^3 \text{ lb} = 0.200 \times 10^3 \text{ lb} = 2.00 \times 10^2 \text{ lb}$