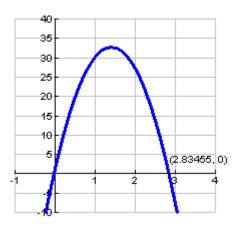
CHAPTER 1

Section 1.1 Solutions	
1. Not a function –	2. Not a function –
0 maps to both -3 and 3.	2 maps to both -2 and 2, and 5 maps to
	both -5 and 5.
3. Not a function –	
4 maps to both -2 and 2, and 9 maps to	4. Function
both –3 and 3.	
5. Function	6. Function
7. Not a function –	8. Not a function –
Since $(1, -2\sqrt{2})$ and $(1, 2\sqrt{2})$ are both on	Since $(1,-1)$ and $(1,1)$ are both on the graph,
the graph, it does not pass vertical line test.	it does not pass the vertical line test.
9. Not a function –	
Since $(1, -1)$ and $(1, 1)$ are both on the	10. Function
graph, it does not pass the vertical line test.	
11. Function	12. Function
13. Not a function –	14. Not a function –
Since $(0,5)$ and $(0,-5)$ are both on the	Since $(0,4)$ and $(0,-4)$ are both on the
graph, it does not pass the vertical line test.	graph, it does not pass the vertical line test.
15. Function	16. Function
17. Not a function –	
Since $(0,-1)$ and $(0,-3)$ are both on the	18. Function
graph, it does not pass the vertical line test.	
19. a) 5 b) 1 c) -3	20. a) 1 b) -5 c) 0
21. a) 3 b) 2 c) 5	22. a) 0 b) 4 c) -5
23. a) -5 b) -5 c) -5	24. a) -2 b) -6 c) -4
25. a) 2 b) -8 c) -5	26. a) 2 b) 0 c) 3
27. 1	28. -1.5 and 3
29. 1 and -3	30. –7
31. For all x in the interval $[-4, 4]$	32. For all <i>x</i> in the set $[-4, 0) \cup [4]$
33. 6	34. -3
35. $f(-2) = 2(-2) - 3 = -7$	36. $G(-3) = (-3)^2 + 2(-3) - 7 = -4$
37. $g(1) = 5 + 1 = 6$	38. $F(-1) = 4 - (-1)^2 = 3$
39. Using #35 and #37, we see that	40. Using #36 and #38, we see that
f(-2) + g(1) = -7 + 6 = -1.	$G(-3) - F(-1) = -4 - 3 = \boxed{-7}$.
41. Using #35 and #37, we see that	42. Using #36 and #38, we see that
3f(-2) - 2g(1) = 3(-7) - 2(6) = -33.	2F(-1) - 2G(-3) = 2(3) - 2(-4) = 14.

43. Using #35 and #37, we see that	44. Using #36 and #38, we see that		
f(-2) 7	G(-3) 4		
$\frac{f(-2)}{g(1)} = \left\lfloor -\frac{7}{6} \right\rfloor.$	$\frac{G(-3)}{F(-1)} = \boxed{-\frac{4}{3}}.$		
45.	46.		
$\frac{f(0) - f(-2)}{g(1)} = \frac{(2(0) - 3) - (-7)}{6}$	$G(0) - G(-3) (0^2 + 2(0) - 7) - (-4)$		
g(1) 6	$\frac{G(0) - G(-3)}{F(-1)} = \frac{\left(0^2 + 2(0) - 7\right) - \left(-4\right)}{3}$		
-3+7 2			
$=\frac{-3+7}{6}=\left\lfloor\frac{2}{3}\right\rfloor$	$=\frac{-7+4}{3}=\boxed{-1}$		
47.			
f(x+1) - f(x-1) = [2((x+1)-3]-[2(x-1)-3]		
=[2x]	x+2-3]-[2x-2-3]		
$=$ $\begin{bmatrix} 2x \end{bmatrix}$	(x-1] - [2x-5]		
=2x	-1-2x+5		
=4			
48.			
$F(t+1) - F(t-1) = \begin{bmatrix} 4 - (t+1) \end{bmatrix}$	$1)^{2} - \left[4 - (t-1)^{2} \right]$		
	$+2t+1)] - [4 - (t^2 - 2t + 1)]$		
$= \lfloor 4 - t^2 - t^2 - t^2 \rfloor$	$2t-1\left]-\left[4-t^2+2t-1\right]\right]$		
$=4-t^2-2$	$2t - 1 - 4 + t^2 - 2t + 1$		
= $-4t$			
49.			
g(x+a) - f(x+a) = [5]	+(x+a)]-[2(x+a)-3]		
=[5	+x+a]-[2x+2a-3]		
= 5 +	-x+a-2x-2a+3		
= $8-x-a$			
50.			
$G(x+b) + F(b) = \left[(x+b)^{2} \right]$	$(2^{2}+2(x+b)-7]+[4-b^{2}]$		
$=x^2+2bx$	$x + b^2 + 2x + 2b - 7 + 4 - b^2$		
$=x^2+2b$	x + 2x + 2b - 3		
51. The domain is \mathbb{R} .	52. The domain is \mathbb{R} .		
This is written using interval notation as	This is written using interval notation as		
$\left\lfloor \left(-\infty,\infty ight) ight brace.$	$(-\infty,\infty)$.		
53. The domain is \mathbb{R} .	54. The domain is \mathbb{R} .		
This is written using interval notation as	This is written using interval notation as		
$(-\infty,\infty)$.	$(-\infty,\infty)$.		

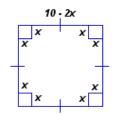
55. The domain is the set of all real	56. The domain is the set of all real
numbers x such that $x-5 \neq 0$, that is	numbers t such that $t + 3 \neq 0$, that is
$x \neq 5$.	$t \neq -3$.
This is written using interval notation as	This is written using interval notation as
$(-\infty,5)\cup(5,\infty)$.	$(-\infty,-3)\cup(-3,\infty)$.
57. The domain is the set of all real	58. The domain is the set of all real
numbers <i>x</i> such that	numbers x such that
$x^2 - 4 = (x - 2)(x + 2) \neq 0,$	$x^2 - 1 = (x - 1)(x + 1) \neq 0,$
that is $x \neq -2, 2$.	that is $x \neq -1, 1$.
This is written using interval notation as	This is written using interval notation as
$\boxed{(-\infty,-2)\cup(-2,2)\cup(2,\infty)}.$	$(-\infty,-1)\cup(-1,1)\cup(1,\infty)$.
59. Since $x^2 + 1 \neq 0$, for every real number	60. Since $x^2 + 4 \neq 0$, for every real number
x, the domain is \mathbb{R} .	x, the domain is \mathbb{R} .
This is written using interval notation as	This is written using interval notation as
$\left(-\infty,\infty ight)$.	$(-\infty,\infty)$.
61. The domain is the set of all real	62. The domain is the set of all real
numbers <i>x</i> such that	numbers <i>t</i> such that
$7-x \ge 0,$	$t-7\geq 0,$
that is $7 \ge x$.	that is $t \ge 7$.
This is written using interval notation as	This is written using interval notation as
$\left\lfloor \left(-\infty,7 ight brace ight brace$.	$\left[\left[7,\infty ight) ight] .$
63. The domain is the set of all real	64. The domain is the set of all real
numbers <i>x</i> such that	numbers x such that
$2x+5\geq 0,$	$5-2x\geq 0,$
that is $x \ge -\frac{5}{2}$.	that is $\frac{5}{2} \ge x$.
This is written using interval notation as	This is written using interval notation as
$\left[-\frac{5}{2},\infty\right)$.	$\left[\left(-\infty,\frac{5}{2}\right]\right]$.
65. The domain is the set of all real	66. The domain is the set of all real
numbers t such that $t^2 - 4 \ge 0$, which is	numbers x such that $x^2 - 25 \ge 0$, which is
equivalent to $(t-2)(t+2) \ge 0$.	equivalent to $(x-5)(x+5) \ge 0$.
CPs are -2 , 2	CPs are -5, 5
$\begin{array}{c c} + & - & + \\ \hline -2 & 2 \end{array}$	$\begin{array}{c c} + & - & + \\ \hline -5 & 5 \end{array}$
This is written using interval notation as	This is written using interval notation as
$\boxed{\left[(-\infty,-2]\cup\left[2,\infty\right)\right]}.$	$\boxed{\left(-\infty,-5\right]\cup\left[5,\infty\right)}.$


67. The domain is the set of all real numbers <i>x</i> such that	68. The domain is the set of all real numbers <i>x</i> such that
x-3>0,	5 - x > 0,
that is $x > 3$.	that is $5 > x$.
This is written using interval notation as	This is written using interval notation as
$(3,\infty)$.	$(-\infty,5)$.
69. Since $1-2x$ can be any real number,	70. Since $7-5x$ can be any real number,
there is no restriction on x , so that the	there is no restriction on <i>x</i> , so that the
domain is $(-\infty,\infty)$.	domain is $(-\infty,\infty)$.
71 The only restriction is that $x + 4 \neq 0$	72. The only restriction is that
71. The only restriction is that $x + 4 \neq 0$, so that $x \neq -4$. So, the domain is	$x^2 - 9 = (x - 3)(x + 3) \neq 0$, so that $x \neq \pm 3$.
1	So, the domain is
$\left \underbrace{(-\infty, -4) \cup (-4, \infty)}_{\bullet} \right .$	$(-\infty,-3)\cup(-3,3)\cup(3,\infty)$
	74. The domain is the set of all real
73. The domain is the set of all real	numbers t such that $25 - x^2 > 0$, which is
numbers <i>x</i> such that	equivalent to $(5-x)(5+x) > 0$.
3-2x>0,	CPs are -5 , 5
that is $\frac{3}{2} > x$.	- + -
This is written using interval notation as	$\begin{array}{ccc} - & + & - \\ \hline -5 & 5 \end{array}$
$\left \left(-\infty,\frac{3}{2}\right)\right .$	This is written using interval notation as
	(-5,5).
75. The domain is the set of all real	
numbers <i>t</i> such that $t^2 - t - 6 > 0$, which is	
equivalent to $(t-3)(t+2) > 0$.	
CPs are -2, 3	76. Since $t^2 + 9 > 0$, for all real numbers t,
+ +	there is no restriction. So, the domain is
$\begin{array}{c c} + & - & + \\ \hline & -2 & 3 \end{array}$	$\left[\left(-\infty,\infty\right)\right]$.
This is written using interval notation as	
$\boxed{\left (-\infty,-2)\cup(3,\infty)\right }.$	

77. The domain is the set of all real numbers <i>t</i> such that $x^2 - 16 \ge 0$, which is equivalent to $(x-4)(x+4) \ge 0$. CPs are -4, 4 $\begin{array}{c} + & - & + \\ & -4 & 4 \end{array}$ This is written using interval notation as $\boxed{(-\infty, -4] \cup [4, \infty)}$.	78. There is no restriction on <i>x</i> . So, the domain is $(-\infty, \infty)$.
79. The function can be written as $r(x) = \frac{x^2}{\sqrt{3-2x}}$. So, the domain is the set of real numbers <i>x</i> such that $3-2x > 0$, that is $\frac{3}{2} > x$. This is written using interval notation as $(-\infty, \frac{3}{2})$.	80. The function can be written as $p(x) = \frac{(x-1)^2}{(x^2-9)^{\frac{3}{5}}}$. So, the domain is the set of real numbers x such that $x^2 - 9 = (x-3)(x+3) \neq 0$, so that $x \neq \pm 3$. So, the domain is $(-\infty, -3) \cup (-3, 3) \cup (3, \infty)$.
81. The domain of any linear function is $(-\infty, \infty)$.	82. The domain of any quadratic function is $(-\infty, \infty)$.
83. Solve $x^2 - 2x - 5 = 3$. $x^2 - 2x - 8 = 0$ (x - 4)(x + 2) = 0 x = -2, 4	84. Solve $\frac{5}{6}x - \frac{3}{4} = \frac{2}{3}$. 10x - 9 = 8 10x = 17 $x = \frac{17}{10}$
85. $2x(x-5)^{3} - 12(x-5)^{2} = 0$ $2(x-5)^{2} [x(x-5)-6] = 0$ $2(x-5)^{2} (x^{2} - 5x - 6) = 0$ $2(x-5)^{2} (x-6)(x+1) = 0$ $x = -1, 5, 6$	86. $3x(x+3)^{2} - 6(x+3)^{3} = 0$ $3(x+3)^{2} [x-2(x+3)] = 0$ $3(x+3)^{2} (-x-6) = 0$ $x = -3, -6$

87. <u>Assume</u>: 6am corresponds to x = 6noon corresponds to x = 12Then, the temperature at 6am is: $T(6) = -0.7(6)^2 + 16.8(6) - 10.8 = 64.8^\circ F$ The temperature at noon is: $T(12) = -0.7(12)^2 + 16.8(12) - 10.8$ $= 90^\circ F$ 88. 9am corresponds to x = 9 and 3pm corresponds to x = 15. So, $T(9) = -0.5(9)^2 + 14.2(9) - 2.8 = 84.5^\circ F$ $T(15) = -0.5(15)^2 + 14.2(15) - 2.8 = 97.7^\circ F$

89. $h(2) = -16(2)^2 + 45(2) + 1 = 27$ ft


Since height must be nonnegative, only those values of t for which $h(t) \ge 0$ should be included in the domain. As such, we must solve $-16t^2 + 45t + 1 \ge 0$. Graphically, we see that

Hence, the domain of *h* is approximately [0, 2.8].

90. $h(14) = -16(4)^2 + 128(4) = 256 \text{ ft}$. The domain is $[0, \infty)$ since we are starting at time t = 0 sec.

91. Start with a square piece of cardboard with dimensions 10 in. \times 10 in.. Then, cut out 4 square corners with dimensions *x* in. \times *x* in., as shown in the diagram:

Upon bending all four corners up, a box of height x is formed. Notice that all four sides of the base of the resulting box have length 10-2x. The volume of the box, V(x), is given by:

$$V(x) = (\text{Length}) \cdot (\text{Width}) \cdot (\text{Height})$$
$$= (10 - 2x)(10 - 2x)(x)$$
$$= x(10 - 2x)^2$$

The domain is (0,5). (For any other values of *x*, one cannot form a box.)

92. The volume of a right circular cylindrical tank whose base radius is 10 ft and whose height is *h* is given by $V(h) = \pi (10)^2 h = 100\pi h$. If the height is increased by 2 ft, the corresponding volume would be:

$$V(h+2) = \pi(10)^2(h+2) = 100\pi h + 200\pi$$

So, the volume increased by 200π cubic ft, which corresponds to $200\pi \cdot 7.48 \text{ gal} \cong \boxed{4700 \text{ gal}}$.

	0					
93.	$E(4) \approx 84$	Yen,	$E(7) \approx 84$	Yen,	$E(8) \approx 83$	Yen

94. a. The number of Japanese Yen to the US Dollar exchange rate increased by approximately 1 Japanese Yen to US Dollar from Week 2 to Week 3.

b. The number of Japanese Yen to the US Dollar exchange rate decreased by

approximately 2 Japanese Yen to US Dollar from Week 6 to Week 7.

95.	P(14) = -	$-\frac{1}{4}(14^2)$	+7(14)+180 =	229	people
-----	-----------	----------------------	--------------	-----	--------

96. $P(6) = -\frac{1}{4}(6^2) + 7(6) + 180 = 213$ people	9
97. (1999, 3000), (2003, 4000), (2007, 5000), (2011, 6000), (2015, 7000)	98. Yes, for every input there corresponds a unique output.
99. a) $F(50) =$ number of tons of carbon emitted by natural gas in 1950 = 0 b) $g(50) =$ number of tons of coal emitted by natural gas in 1950 = 1000 c) $H(50) = 2000$	100. $F(100) + g(100) + G(100)$ represents the total amount (in millions of metric tons) of carbon emitted in 2000 by natural gas, coal, and petroleum.
101. Should apply the <u>vertical</u> line test to determine if the relationship describes a function. The given relationship IS a function in this case.	102. $H(3) - H(-1) \neq H(3) + H(1)$, in general. You cannot distribute -1 through in this manner.

103. $f(x+1) \neq f(x) + f(1)$, in general. You cannot distribute the function <i>f</i> through the input at which you are evaluating it.	104. There are two mistakes. One, the computation $3-t > 0$ should be $3-t \ge 0$. And two, the statement directly preceding the computation should be, "What can $3-t$ be?" The domain should be $(-\infty,3]$.	
105. False. Consider the function	106. False. Consider the function	
$f(x) = \sqrt{9 - x^2}$ on its domain $[-3,3]$. The	$f(x) = x^2$ on its domain \mathbb{R} .	
vertical line test $x = 4$ doesn't intersect the		
graph, but it still defines a function.		
107. True	108. True	
109. $f(1) = A(1)^2 - 3(1) = -1$	110. $g(3) = \frac{1}{b-3}$ is undefined only if	
A - 3 = -1	b=3.	
A = 2		
111. $F(-2) = \frac{C - (-2)}{D - (-2)} = \frac{C + 2}{D + 2}$ is undefined only if $D = -2$. So, $F(-1) = \frac{C - (-1)}{D - (-1)} = \frac{C + 1}{D + 1} = \frac{C + 1}{-2 + 1} = -(C + 1) = 4$ implies that $C = -5$.		
112. Many functions will work here. The easiest ones to construct are of the form $g(x) = \frac{b}{x-5}$. For such a function, certainly $g(5)$ is undefined. In order for $(1, -1)$ to be		
on the graph, it must be the case that $-1 = \frac{b}{1-5} = \frac{b}{-4}$, so that $b = 4$. So, one function		
that works is $g(x) = \frac{4}{x-5}$.		
113. The domain is the set of all real	114. The domain is the set of all real numbers x such that $x^2 - a^2 = (x - a)(x + a) \ge 0$.	
numbers x such that 2^{2} () () () which is	$\begin{array}{l} x - a = (x - a)(x + a) \ge 0. \\ \text{CPs:} x = \pm a \end{array}$	
$x^{2} - a^{2} = (x - a)(x + a) \neq 0$, which is		
equivalent to $x \neq \pm a$. So, the domain is	+ - + + · · · · · · · · · · · · · · · ·	
$\left (-\infty, -a) \cup (-a, a) \cup (a, \infty) \right .$		
	So, the domain is $(-\infty, -a] \cup [a, \infty)$.	

115. $\frac{f(x+h)-f(x)}{h} = \frac{\left[\left(x+h\right)^{3}+\left(x+h\right)\right]-\left[x^{3}+x\right]}{h}$ $= \frac{x^{3}+3x^{2}h+3xh^{2}+h^{3}+x+h-x^{3}-x}{h}$ $= \frac{h(3x^{2}+3xh+h^{2}+1)}{h} = \boxed{3x^{2}+3xh+h^{2}+1}$ So, at h = 0 we get $\boxed{f'(x) = 3x^{2}+1}$. 116. $\frac{f(x+h)-f(x)}{h} = \frac{\left[6(x+h)+\sqrt{x+h}\right]-\left[6x+\sqrt{x}\right]}{h}$ $= \frac{6h}{h} + \frac{\sqrt{x+h}-\sqrt{x}}{h}$ $= 6 + \frac{(\sqrt{x+h}-\sqrt{x})(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})}$ $= 6 + \frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})} = 6 + \frac{1}{\sqrt{x+h}+\sqrt{x}}$ So, at h = 0 we get $\boxed{f'(x) = 6 + \frac{1}{2\sqrt{x}}}$.

117.

$$\frac{f(x+h)-f(x)}{h} = \frac{\frac{x+h-5}{x+h+3} - \frac{x-5}{x+3}}{h}$$

$$= \frac{(x+h-5)(x+3)-(x-5)(x+h+3)}{h(x+h+3)(x+3)}$$

$$= \frac{(x^2+xh-5x+3x+3h-15)-(x^2+hx+3x-5x-5h-15)}{h(x+h+3)(x+3)}$$

$$= \frac{8h}{h(x+h+3)(x+3)} = \frac{8}{(x+h+3)(x+3)}$$
So, at $h = 0$ we get $f'(x) = \frac{8}{(x+3)^2}$

118.

$$\frac{f(x+h)-f(x)}{h} = \frac{\sqrt{\frac{x+h+7}{5-(x+h)}} - \sqrt{\frac{x+7}{5-x}}}{h} \\
= \frac{\sqrt{x+h+7}\sqrt{5-x} - \sqrt{x+7}\sqrt{5-x-h}}{h\sqrt{5-x-h}\sqrt{5-x}} \\
= \frac{\sqrt{(x+h+7)(5-x)} - \sqrt{(x+7)(5-x-h)}}{h\sqrt{5-x-h}\sqrt{5-x}} \cdot \frac{\sqrt{(x+h+7)(5-x)} + \sqrt{(x+7)(5-x-h)}}{\sqrt{(x+h+7)(5-x)} + \sqrt{(x+7)(5-x-h)}} \\
= \frac{\sqrt{(x+h+7)(5-x)} - \sqrt{(x+7)(5-x-h)}}{h\sqrt{5-x-h}\sqrt{5-x}} \cdot \frac{\sqrt{(x+h+7)(5-x)} + \sqrt{(x+7)(5-x-h)}}{\sqrt{(x+h+7)(5-x)} + \sqrt{(x+7)(5-x-h)}} \\
= \frac{(5h+35-x^2-hx-2x) - (-2x-x^2-hx+35-7h)}{h\sqrt{5-x-h}\sqrt{5-x}(\sqrt{(x+h+7)(5-x)} + \sqrt{(x+7)(5-x-h)})} \\
= \frac{(5h-35-x^2-hx-2x) - (-2x-x^2-hx+35-7h)}{\sqrt{5-x-h}\sqrt{5-x}(\sqrt{(x+h+7)(5-x)} + \sqrt{(x+7)(5-x-h)})} \\
= \frac{12}{\sqrt{5-x-h}\sqrt{5-x}(\sqrt{(x+h+7)(5-x)} + \sqrt{(x+7)(5-x-h)})} \\
\text{So, at } h = 0 \text{ we get} \\
f'(x) = \frac{12}{\sqrt{5-x}\sqrt{5-x}(\sqrt{(x+7)(5-x)} + \sqrt{(x+7)(5-x)})} \\
= \frac{6}{(5-x)\sqrt{(x+7)(5-x)}} = \frac{6}{(x+7)^{\frac{1}{2}}(5-x)^{\frac{1}{2}}} \\$$

		$\boldsymbol{\zeta}$ $\boldsymbol{\zeta}$ $\boldsymbol{\zeta}$ $\boldsymbol{\zeta}$ $\boldsymbol{\zeta}$ $\boldsymbol{\zeta}$	
-	x +5 = -1 x +5	6. $f(-x) = -x + (-x)^2$	
=	$x \Big + 5 = f(x)$	$= -1 x + x^2 = f(x)$	
So, even.	Thus, f cannot be odd.	So, even. Thus, <i>f</i> cannot be odd.	
- 1	x = -1 x = f(x)	8. $f(-x) = (-x)^3 = -x^3 = -1 x^3 = f(x)$	
So, even.	Thus, f cannot be odd.	So, even. Thus, f cannot be odd.	
9. $G(-t) = (-t) $	-t)-3 = -(t+3)	10. $G(-t) = (-t)+2 \neq G(t)$	
= t	$ +3 \neq G(t)$	So, not even.	
· · · · ·	ot even.	$-G(-t) = -\left \left(-t\right) + 2\right \neq G(t)$	
-G(-t) = -G(-t)	$-\left t+3\right \neq G(t)$	So, not odd. Thus, neither.	
So, no	ot odd. Thus, neither.		
11. $G(-t) = \sqrt{10}$	$\sqrt{-t-3} = \sqrt{-(t+3)} \neq G(t)$	12. $f(-x) = \sqrt{2 - (-x)} = \sqrt{2 + x} \neq f(x)$	
So, not	even.	So, not even.	
-G(-t) =	$-\sqrt{-(t+3)} \neq G(t)$	$-f(-x) = -\sqrt{2+x} \neq f(x)$	
	Note: Cannot distribute -1 here	So, not odd. Thus, neither.	
So, not	odd. Thus, neither.		
13. $g(-x) = \sqrt{x}$	$\sqrt{\left(-x\right)^2 + \left(-x\right)}$	14. $f(-x) = \sqrt{(-x)^2 + 2} = \sqrt{x^2 + 2} = f(x)$	
$=\sqrt{x^2-x}\neq g(x)$		So, even. Thus, f cannot be odd.	
So, not even.			
$-g(-x) = -\sqrt{x^2 - x} \neq g(x)$			
So, no	t odd. Thus, neither.		
15. $h(-x) = -$	$\frac{1}{x} + 3 \neq h(x)$	16. $h(-x) = \frac{1}{-x} - 2(-x) = -\left(\frac{1}{x} - 2x\right) \neq h(x)$	
So, not	even.	So, not even.	
-h(-x) = -	$-\left(\frac{1}{-x}+3\right) = \frac{1}{x}-3 \neq h(x)$	$-h(-x) = -\left(-\left(\frac{1}{x} - 2x\right)\right) = \frac{1}{x} - 2x = h(x)$	
	odd. Thus, neither.	So, odd.	
17.			
Domain	$(-\infty,\infty)$		
Range	[-1,∞)	d) 0	
Increasing	(-1,∞)	e) -1	
Decreasing	(-3,-2)	f) 2	
Constant	$(-\infty, -3) \cup (-2, -1)$		

18.		
10.		
Domain	$\left[-4,\infty ight)$	
Range	(-∞,3]	d) -1
Increasing	(1,2)	e) approximately 1.8
Decreasing	$(-3,0)\cup(2,\infty)$	f) 1
Constant	$\left[-4,-3\right)\cup(0,1)$	
		_
19.		
		-
Domain	[-7,2]	
Range	[-5,4]	d) 4
Increasing	(-4, 0)	e) 1 f) -5
Decreasing	$(-7, -4) \cup (0, 2)$	
Constant	nowhere	
20.		
Domain	(1
	$\frac{\left(-\infty,\infty\right)}{\left(-\infty,\infty\right)}$	-
Range		d) 0 e) 3.5
Increasing	$(-\infty, -3) \cup (3, \infty)$	f) approximately -3.3
Decreasing Constant	(-3,3) nowhere	
Constant	nownere	
21.		
Domain	$(-\infty,\infty)$]
Range	$(-\infty,\infty)$	d) 2
Increasing	$(-\infty, -3) \cup (4, \infty)$	e) 2
Decreasing	nowhere	f) 2
Constant	(-3,4)	1
L		-

2.		
Domain	$(-\infty,\infty)$	
Range	$(-\infty,\infty)$	d) 0
Increasing	nowhere	e) 1
Decreasing	$(-\infty,\infty)$	f) -1
Constant	nowhere	
23.		
Domain	$(-\infty,\infty)$	
Range	$\left[-4,\infty ight)$	d) -4
Increasing	$(0,\infty)$	e) 0
Decreasing	$(-\infty,0)$	- f) 0
Constant	nowhere	_
Domain	$(-\infty,\infty)$	
Domain	$(-\infty,\infty)$	
Range	$\left[0,\infty ight)$	d) 0
Increasing	$(3,\infty)$	e) 0
Decreasing	$(-\infty, -3)$	f) 0
Constant	(-3,3)	_
25.		
		_
Domain	$ig(-\infty,0ig)igcup(0,\inftyig)$	
Domain Range	$(-\infty,0)\cup(0,\infty) \ (-\infty,0)\cup(0,\infty)$	d) undefined
		e) 3
Range	$\left(-\infty,0 ight)\cup\left(0,\infty ight)$	

• (
26.		
Domain	$(-\infty,4)\cup (4,\infty)$	
Range	$\frac{(-\infty,4)\cup(4,\infty)}{(-\infty,\infty)}$	d) 4
Increasing	$(-\infty,0)\cup (4,\infty)$	e) approximately 3.5
Decreasing	(0,4)	f) approximately 2.5
Constant	nowhere	
27.		
Domain	$ig(-\infty,0ig)\cupig(0,\inftyig)$	
Range	$(-\infty,5)\cup[7]$	d) undefined
Increasing	$(-\infty,0)$	e) 3
Decreasing	$(5,\infty)$	f) 7
Constant	(0,5)	
28.		
Domain	$(-8,0) \cup (0,4]$	
Range	$\frac{(-8,0)\cup(0,4]}{(-4,3]}$	d) undefined
Increasing	$(-8,-5)\cup(0,4)$	e) approximately -0.8
Decreasing	(-5,0)	\mathbf{f}) 0
Constant	nowhere	
29. $\boxed{(x+h)^2}$	$\frac{\left[2-(x+h)\right]-\left[x^2-x\right]}{h} =$	30. $\frac{\left[(x+h)^2 + 2(x+h)\right] - \left[x^2 + 2x\right]}{h} =$
	$\frac{x+h^2-x-h-x^2+x}{h} =$	$\frac{x^2 + 2hx + h^2 + 2x + 2h - x^2 - 2x}{h} =$
$\frac{\not h\left(2x+{\not h}\right)}{\not h}$	$\frac{h-1)}{2x+h-1} = 2x+h-1$	$\frac{\cancel{h}(2x+h+2)}{\cancel{h}} = \boxed{2x+h+2}$

31.

$$\begin{bmatrix} (x+h)^{2} + 3(x+h) \\ h \\ - h \\ -$$

39. $\frac{f(x+h)-f(x)}{h} = \frac{\frac{2}{x+h-2} - \frac{2}{x-2}}{h} = \frac{2(x-2) - 2(x+h-2)}{h(x+h-2)(x-2)} = \frac{2x-4-2x-2h+4}{h(x+h-2)(x-2)}$ $=\frac{-2h}{h(x+h-2)(x-2)}=\left|\frac{-2}{(x+h-2)(x-2)}\right|$ 40. $\frac{f(x+h)-f(x)}{h} = \frac{\frac{x+h+5}{x+h-7} - \frac{x+5}{x-7}}{h} = \frac{(x+h+5)(x-7) - (x+5)(x+h-7)}{h(x+h-7)(x-7)}$ $=\frac{\left(x^{2}+xh+5x-7x-7h-35\right)-\left(x^{2}+hx-7x+5x+5h-35\right)}{h(x+h-7)(x-7)}$ $=\frac{-12h}{h(x+h-7)(x-7)}=\left|\frac{-12}{(x+h-7)(x-7)}\right|$ 41. $\frac{f(x+h) - f(x)}{h} = \frac{\sqrt{1 - 2(x+h)} - \sqrt{1 - 2x}}{h}$ $=\frac{\sqrt{1-2(x+h)}-\sqrt{1-2x}}{h}\cdot\frac{\sqrt{1-2(x+h)}+\sqrt{1-2x}}{\sqrt{1-2(x+h)}+\sqrt{1-2x}}$ $=\frac{(1-2x-2h)-(1-2x)}{h\left(\sqrt{1-2(x+h)}+\sqrt{1-2x}\right)}=\frac{-2h}{h\left(\sqrt{1-2(x+h)}+\sqrt{1-2x}\right)}$ $=\frac{-2}{\sqrt{1-2(x+h)}+\sqrt{1-2x}}$ 42. $\frac{f(x+h) - f(x)}{h} = \frac{\sqrt{(x+h)^2 + (x+h) + 1} - \sqrt{x^2 + x + 1}}{x}$ $=\frac{\sqrt{(x+h)^{2}+(x+h)+1}-\sqrt{x^{2}+x+1}}{h}\cdot\frac{\sqrt{(x+h)^{2}+(x+h)+1}+\sqrt{x^{2}+x+1}}{\sqrt{(x+h)^{2}+(x+h)+1}+\sqrt{x^{2}+x+1}}$ $=\frac{\left[\left(x+h\right)^{2}+\left(x+h\right)+1\right]-\left[x^{2}+x+1\right]}{h\left(\sqrt{\left(x+h\right)^{2}+\left(x+h\right)+1}+\sqrt{x^{2}+x+1}\right)}=\frac{\left[x^{2}+2hx+h^{2}+x+h+1\right]-\left[x^{2}+x+1\right]}{h\left(\sqrt{\left(x+h\right)^{2}+\left(x+h\right)+1}+\sqrt{x^{2}+x+1}\right)}$ $=\frac{h(2x+h+1)}{h(\sqrt{(x+h)^{2}+(x+h)+1}+\sqrt{x^{2}+x+1})}=\frac{2x+h+1}{\sqrt{(x+h)^{2}+(x+h)+1}+\sqrt{x^{2}+x+1}}$

$$\begin{aligned} \mathbf{43.} \\ & \frac{f(x+h) - f(x)}{h} = \frac{\frac{4}{\sqrt{x+h}} - \frac{4}{\sqrt{x}}}{h} = \frac{4\sqrt{x} - 4\sqrt{x+h}}{h\sqrt{x}\sqrt{x+h}} = \frac{4\left(\sqrt{x} - \sqrt{x+h}\right)}{h\sqrt{x}\sqrt{x+h}} \cdot \frac{\sqrt{x} + \sqrt{x+h}}{\sqrt{x} + \sqrt{x+h}} \\ & = \frac{4\left(x - (x+h)\right)}{h\sqrt{x}\sqrt{x+h}\left(\sqrt{x} + \sqrt{x+h}\right)} = \left[\frac{-4}{\sqrt{x(x+h)}\left(\sqrt{x} + \sqrt{x+h}\right)}\right] \end{aligned}$$

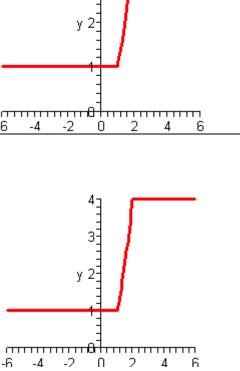
$$\begin{aligned} \mathbf{44.} \\ & \frac{f(x+h) - f(x)}{h} = \frac{\sqrt{x+h}}{h} - \sqrt{\frac{x}{x+1}}}{h} = \frac{\sqrt{x+h}\sqrt{x+1} - \sqrt{x}\sqrt{x+h+1}}{h\sqrt{x+1}\sqrt{x+h+1}} \\ & = \frac{\sqrt{(x+h)(x+1)} - \sqrt{x(x+h+1)}}{h\sqrt{x+1}\sqrt{x+h+1}} \cdot \frac{\sqrt{(x+h)(x+1)} + \sqrt{x(x+h+1)}}{h\sqrt{x+1}\sqrt{x+h+1}} \\ & = \frac{\sqrt{(x+h)(x+1)} - \sqrt{x(x+h+1)}}{h\sqrt{x+1}\sqrt{x+h+1}} \cdot \frac{\sqrt{(x+h)(x+1)} + \sqrt{x(x+h+1)}}{\sqrt{(x+h)(x+1)} + \sqrt{x(x+h+1)}} \\ & = \frac{(x^2 + hx + x + h) - (x^2 + xh + x)}{h\sqrt{x+1}\sqrt{x+h+1}\left(\sqrt{(x+h)(x+1)} + \sqrt{x(x+h+1)}\right)} \\ & = \frac{(x^2 + hx + x + h) - (x^2 + xh + x)}{h\sqrt{x+1}\sqrt{x+h+1}\left(\sqrt{(x+h)(x+1)} + \sqrt{x(x+h+1)}\right)} \\ & = \frac{1}{\sqrt{x+1}\sqrt{x+h+1}\left(\sqrt{(x+h)(x+1)} + \sqrt{x(x+h+1)}\right)} \\ & = \frac{1}{\sqrt{x+1}\sqrt{x+h+1}\left(\sqrt{(x+h)(x+1)} + \sqrt{x(x+h+1)}\right)} \\ & = \frac{1}{\sqrt{x+1}\sqrt{x+h+1}\left(\sqrt{(x+h)(x+1)} + \sqrt{x(x+h+1)}\right)}} \\ & = \frac{1}{\sqrt{x+1}\sqrt{x+h+1}\left(\sqrt{x+h+1}\right)\left(\sqrt{x+h}(x+1) + \sqrt{x(x+h+1)}\right)} \\ & = \frac{1}{\sqrt{x+1}\sqrt{x+h+1}\left(\sqrt{x+h+1}\right)\left(\sqrt{x+h}(x+1) + \sqrt{x(x+h+1)}\right)}} \\ & = \frac{1}{49} \cdot \frac{(1-2(3)) - (1-2(1))}{3-1} = \frac{-5 - (-1)}{2} = [-2]} \\ & 50 \cdot \frac{(9-3^2) - (9-1^2)}{3-1} = \frac{0-8}{2} = [-4] \\ & 51 \cdot \frac{|5-2(3)| - |5-2(1)|}{3-1} = \frac{|-1|-3}{2} = [-1] \\ & 52 \cdot \frac{\sqrt{3^2 - 1} - \sqrt{1^2 - 1}}{3-1} = \frac{\sqrt{8}}{2} = [\sqrt{2}] \\ \end{array}$$

53.		Ē
Domain	$(-\infty,\infty)$	μ ⁴ μ ₂
Range	(-∞,2]	
Increasing	$(-\infty,2)$	-4 -2 1 2 4
Decreasing	nowhere	-21 x
Constant	$(2,\infty)$	-4
54.		
Domain	$(-\infty,\infty)$	
Range	$\{-1\} \cup (1,\infty)$	
Increasing	nowhere	6
Decreasing	$(-\infty, -1)$	4
Constant	$(-1,\infty)$	2
	<u>h</u> : There should be an open and a closed hole at $(-1, -1)$.	-10 -5 -
55.		
Domain	$(-\infty,\infty)$	14 12 10 8 6 4 2
Range	$[0,\infty)$	₽ 10
Increasing	$(0,\infty)$	
Decreasing	(-1,0)	Ē4
Constant	$(-\infty, -1)$	
		-6 -4 -2 0 2 4

56.		101
Domain	$(-\infty,\infty)$	8
Range	$\left[0,\infty\right)$	
Increasing	(0,2)	6
Decreasing	$(-\infty, 0)$	
Constant	(2,∞)	2
		-6 -4 -2 0 2 4 6 8
57.		
		25
Domain	$(-\infty,\infty)$	201 V
Range	$(-\infty,\infty)$	15
Increasing	$(-\infty,\infty)$	10
Decreasing	nowhere	5
Constant	nowhere	-42_D 2 4 6
		_429 2 4 6 ×
58.		F14
Domain	$(-\infty,\infty)$	14 12 10 8 9 6 4 2
Range	$\left[0,\infty ight)$	
Increasing	$(0,\infty)$	E ^o y
Decreasing	$(-\infty, 0)$	E ₄
Constant	nowhere	
59.		257
Domain	$(-\infty,\infty)$	20
Range	[1,∞)	15
Increasing	$(1,\infty)$	y 10
Decreasing	(-∞,1)	5
Constant	nowhere	······
		-6-4-20246

60.		F I
Domain	$(-\infty,\infty)$	Ē10
Range	$(-\infty,\infty)$	
Increasing	$(-\infty,-1)\cup(0,\infty)$	5
Decreasing	(-1,0)	
Constant	nowhere	-6 -4 -2 4 2 4
		E-5 ×
61.		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Domain	(-∞,2)∪(2,∞)	8 -
Range	(1,∞)	7 t
Increasing	(2,∞)	5
Decreasing	(-∞,2)	4 +
Constant	nowhere	3 †
62.		3-0.5% 4+1.5% 8
Domain	(-∞,-2)∪(-2,∞)	7 -
Range	(1,∞)	6 † 5 †
Increasing	(−2,∞)	- •
Decreasing Constant	(−∞,−2) nowhere	
Constant	nownere	
63.		47
Domain	$(-\infty,\infty)$	3
Range	[-1,3]	y 2
Increasing	(-1,3)	1
Decreasing	nowhere	······
Constant	$(-\infty, -1) \cup (3, \infty)$	-6 -4 -2 19 2 4 6
		_2 ⁼ ×

Domain	$(-\infty,-1)\cup(-1,3)\cup(3,\infty)$
Range	[-1,3]
Increasing	(-1,3)
Decreasing	nowhere
Constant	$(-\infty,-1)\cup(3,\infty)$


Increasing	(-1,3)	2=
Decreasing	nowhere	1
Constant	$(-\infty,-1)\cup(3,\infty)$	-6 -4 -2 4
<u>Notes on Grap</u> holes at (–1,–	bh: There should be open 1) and (3, 3).	-2 ⁻¹
65.		4
Domain	$(-\infty,\infty)$	3-
Range	[1,4]	-
Increasing	(1,2)	y 2
Decreasing	nowhere	
Constant	$(-\infty,1)\cup(2,\infty)$	
		-6 -4 -2 0

66.

65.

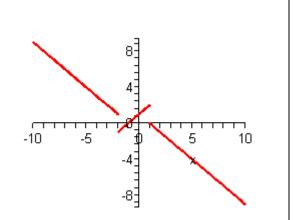
Domain	$(-\infty,1)\cup(1,2)\cup(2,\infty)$
Range	[1,4]
Increasing	(1,2)
Decreasing	nowhere
Constant	$(-\infty,1)\cup(2,\infty)$

Notes on Graph: There should be open holes at (1,1) and (2,4).

Э y 2 1

mm

4

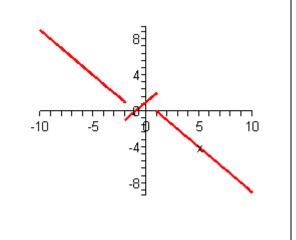

х

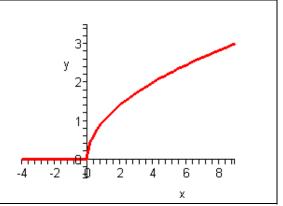
6

2

Domain	$(-\infty,-2)\cup(-2,\infty)$
Range	$(-\infty,\infty)$
Increasing	(-2,1)
Decreasing	$(-\infty,-2)\cup(1,\infty)$
Constant	nowhere

<u>Notes on Graph</u>: There should be open holes at (-2,1), (-2,-1), and (1,2), and a closed hole at (1,0).


68.


Domain	$(-\infty,1)\cup(1,\infty)$	
Range	$(-\infty,\infty)$	
Increasing	(-2,1)	
Decreasing	$(-\infty,-2)\cup(1,\infty)$	
Constant	nowhere	

<u>Notes on Graph</u>: There should be open holes at (-2, -1), (1, 2), and (1, 0), and a closed hole at (-2, 1).

69.

Domain	$(-\infty,\infty)$
Range	$[0,\infty)$
Increasing	$(0,\infty)$
Decreasing	nowhere
Constant	$(-\infty,0)$

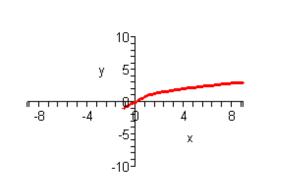
70.		21
Domain	$(-\infty,1)\cup(1,\infty)$	
Range	[1,∞)	1.5
Increasing	$(1,\infty)$	
Decreasing	nowhere	× '1
Constant	$(-\infty,1)$	0.5
Notes on Graphole at $(1,1)$.	<u>h</u> : There should be an open	
71.		
Domain	$(-\infty,\infty)$	10- -
Range	$(-\infty,\infty)$	y 5
Increasing	nowhere	
Decreasing	$ig(-\infty,0ig)\cupig(0,\inftyig)$	-10 -5 10
Constant	nowhere	-5 ×
Notes on Grap hole at (0,0).	<u>h</u> : There should be a closed	-10
72.		10]
Domain	$(-\infty,\infty)$	
Range	$(-\infty,\infty)$	y 5
Increasing	$ig(-\infty,0ig)\cupig(0,\inftyig)$	
Decreasing	nowhere	-10 -5 1 5 10
Constant	nowhere	_= ×
Notes on Grap hole at (0,0).	<u>h</u> : There should be a closed	-5- -10-

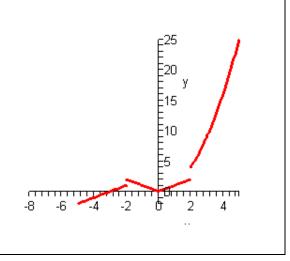
Domain	$(-\infty,1)\cup(1,\infty)$
Range	$(-\infty,-1)\cup(-1,\infty)$
Increasing	(-1,1)
Decreasing	$(-\infty,-1)\cup(1,\infty)$
Constant	nowhere

<u>Notes on Graph</u>: There should be open holes at (-1, -1), (1, 1) and (1, -1). Also, the graph of $-\sqrt[3]{x}$ should appear on the interval $(-\infty, -1)$ with a closed hole at (-1, 1).

74.

Domain	$(-\infty,1)\cup(1,\infty)$	
Range	$(-\infty,1)\cup(1,\infty)$	
Increasing	$(1,\infty)$	
Decreasing	$(-\infty, -1)$	
Constant	nowhere	


<u>Notes on Graph</u>: The graph of $-\sqrt[3]{x}$ should appear on the interval $(-\infty, -1)$.


75.

Domain	$(-\infty,\infty)$	
Range	$(-\infty,2)\cup [4,\infty)$	
Increasing	$(-\infty,-2)\cup(0,2)\cup(2,\infty)$	
Decreasing	(-2,0)	
Constant	nowhere	

<u>Notes on Graph</u>: There should be open holes at (-2, 2), (2, 2) and closed holes at (-2, 1), (2, 4).

7(
76.				
Domain	$(-\infty,-1)\cup(-1,1)\cup(1,\infty)$	► E ⁸		
Range	$[1,\infty)$	с ⁶ 77 66 55 4 у 23 22		
Increasing	$(1,\infty)$			
Decreasing	(-∞,-1)			
Constant	(-1,1)			
Notes on Grap holes at (-1,1)	<u>bh</u> : There should be open), (1,1).	-8 -6 -4 -2 0 2 4		
77.				
Domain	$(-\infty,1)\cup(1,\infty)$			
Range	$(-\infty,1)\cup(1,\infty)$	Ę₄ y		
Increasing	$(-\infty,1)\cup(1,\infty)$	2		
Decreasing	nowhere	-4 -3 -2 1 € 1 2 3		
Constant	nowhere	-4 -3 -2 1 6 1 2 3 E-2 × E-4		
hole at (1,1).	<u>bh</u> : There should be an open	Ē-4		
78.		. 10-		
Domain	$(-\infty,\infty)$			
Range	$(-1,\infty)$	У 6		
Increasing	$(-1,\infty)$	4 2		
Decreasing	$(-\infty, -1)$	2		
Constant	nowhere	-4 -2 <u>-</u> 2 4 6		
Notes on Graph: There should be an open hole at $(-1,-1)$ and a closed hole at $(-1,1)$.				
79. Profit is increasing from $t = 10$ to $t =$		80. Cost is increasing from $t = 1$ to $t = 8$,		
12, which corresponds to Oct. to Dec.		which corresponds to Jan to Aug.		
Profit is decreasing from $t = 1$ to $t = 10$, which corresponds to Ian to Oct		Cost is decreasing from $t = 8$ to $t = 12$, which corresponds to Aug to Dec		
which corresponds to Jan to Oct. Profit never remains constant.		which corresponds to Aug to Dec. Cost never remains constant.		
FIOH nevel remains constant.		Cost never remains constant.		

81. Let x = number of T-shirts ordered. 82. Let x = number of new uniforms The cost function is given by ordered. The cost function is given by $C(x) = \begin{cases} 176.12x, & 0 \le x \le 50\\ 159.73x, & 50 < x \le 100 \end{cases}$ $10x, 0 \le x \le 50$ $C(x) = \{9x, 50 < x < 100\}$ $8x, x \ge 100$ 83. Let x = number of boats entered. The cost function is given by $250x, \qquad 0 \le x \le 10$ $2500 + 175 \cdot (x-10), \qquad x > 10 = \begin{cases} 250x, & 0 \le x \le 10\\ 10 \text{ bosts} \end{cases}$ $x > 10 = \begin{cases} 250x, & 0 \le x \le 10\\ 175x + 750, & x > 10 \end{cases}$ C(x) =10 boats **84.** Let x = number of minutes. The cost function is given by $\begin{array}{c} 0.39x, \\ 3.90 \\ \text{Cost for first} \\ 10 \text{ minutes} \end{array} + 0.12 \cdot \underbrace{(x-10)}_{\# \text{ of minutes beyond first 10}}, \quad 0 \le x \le 10 \\ \# \text{ of minutes beyond first 10} \end{array} = \begin{cases} 0.39x, & 0 \le x \le 10 \\ 0.12x + 2.7, & x > 10 \end{cases}$ C(x) =**85.** Let x = number of books sold. Since a single book sells for \$20, the amount of money earned for *x* books is 20*x*. Then, the amount of royalties due to the author (as a function of *x*) is given by: $R(x) = \begin{cases} \underbrace{50,000}_{\text{Amount upfront}} + \underbrace{0.15(20.7)}_{\text{Amount upfront}} \\ 50,000 + \underbrace{0.15(2,000,000)}_{\text{Royalties from first 100,000 books}} + \underbrace{0.20(20)(x-100,000)}_{20\% \text{ royalties on books}} \\ \underbrace{0.20($ $0 \le x \le 100,000$ Simplifying the terms above yields bove yields $R(x) = \begin{cases} 50,000 + 3x, & 0 \le x \le 100,000 \\ -50,000 + 4x, & x > 100,000 \end{cases}$ **86.** Let x = number of books sold. Since a single book sells for \$20, the amount of money earned for x books is 20x. Then, the amount of royalties due to the author (as a function of *x*) is given by: 35,000 + $0 \le x \le 100,000$ 0.15(20x) $R(x) = \begin{cases} 35,000 + 0.15(2,000,000) \\ 35,000 + 0.15(2,000,000) \\ 35,000 + 0.15(2,000,000) \\ 3504 \text{ revalues on books} \end{cases}, x > 100,000 \\ 3504 \text{ revalues on books} \end{cases}$ beyond initial 100,000 Simplifying the terms above yields $R(x) = \begin{cases} 35,000 + 3x, & 0 \le x \le 100,000\\ -165,000 + 5x, & x > 100,000 \end{cases}$

87. Observe that	88. Observe that				
$\int 0.98, \qquad 0 < x \le 1$	$(1.13, 0 < x \le 1)$				
	$1.13 + 0.17, 1 < x \le 2$				
$f(x) = \begin{cases} 0.98 + 0.22, & 1 < x \le 2\\ 0.98 + 0.22(2), & 2 < x \le 3 \end{cases}$	$f(x) = \begin{cases} 1.13 + 0.17, & 1 < x \le 2\\ 1.13 + 0.17(2), & 2 < x \le 3\\ . & . \end{cases}$				
:	:				
Using the greatest integer function, we	Using the greatest integer function we				
	Using the greatest integer function, we				
have $f(x) = 0.98 + 0.22 [[x]], 0 \le x$.	have $f(x) = 1.13 + 0.17 [x], 0 \le x$.				
89. $f(t) = 3(-1)^{[t]}, t \ge 0$	90. $f(x) = (-1)^{\left(1 + \left[\frac{x}{100}\right]\right]}, x \ge 0$				
91. a) $\frac{1500-500}{1950-1900} = 20$ per year	92. a) $\frac{5000 - 1500}{1975 - 1950} = 140$ per year				
b) $7000-1500 = 110$ per year	b) $7000-5000 = 80$ per year				
b) $\frac{7000 - 1500}{2000 - 1950} = \boxed{110 \text{ per year}}$	b) $\frac{7000-5000}{2000-1975} = \boxed{80 \text{ per year}}$				
93.	94.				
$\frac{h(2) - h(1)}{2 - 1} = \frac{\left(-16(2)^2 + 48(2)\right) - \left(-16(1)^2 + 48(1)\right)}{2 - 1}$	$\frac{h(3) - h(1)}{3 - 1} = \frac{\left(-16(3)^2 + 48(3)\right) - \left(-16(1)^2 + 48(1)\right)}{3 - 1}$				
= 0 ft/sec	= -16 ft/sec				
95. The first quarter starts at $t = 1$ and	96. The fourth quarter starts at $t = 273$ and ends at $t = 365$. So, the average rate of				
ends at $t = 90$. So, the average rate of change in $d(t)$ during the first quarter is	change in $d(t)$ during the fourth quarter is				
	$\frac{d(365) - d(273)}{d(273)} =$				
$\frac{d(90) - d(1)}{90 - 1} =$	365 - 273				
$\left \frac{\left(3\sqrt{90^2+1}-2.75(90)\right) - \left(3\sqrt{1^2+1}-2.75(1)\right)}{89} \approx 0.236 \right $	$\frac{\left(3\sqrt{365^2+1}-2.75(365)\right)-\left(3\sqrt{273^2+1}-2.75(273)\right)}{92}$				
× 0.236	92 ≈ 0.250				
So, demand is increasing at an	So, demand is increasing at an $\frac{1}{2}$				
approximate rate of 236 units over the first	approximate rate of 250 units over the				
quarter.	fourth quarter.				
97. The portion of $C(x)$ for $x > 30$ should	98. The portion of $C(x)$ for $x > 10,000$				
be: $15 + x - 30$	should be: $0.02(10,000) + 0.04(n-10,000)$				
Number minutes beyond first 30	0.02(10,000) + 0.04(x - 10,000)				
99. False. For instance, $f(x) = x^3$ is	100. True.				
always increasing.	100, 11uc.				
101. The individual pieces used to form <i>f</i> , namely ax , bx^2 , are continuous on \mathbb{R} . So,					
the only x-value with which we need to be concerned regarding the continuity of f is					
$x = 2$. For f to be continuous at 2, we need $a(2) = b(2)^2$, which is the same as $a = 2b$.					
102. Both $\frac{1}{x}$ and $-\frac{1}{x}$ are undefined at $x = 0$. So, for every value of <i>a</i> , either $a > 0$ or					
$a \le 0$. Hence, we would need to evaluate either a set of the evaluate evaluate either a set of the evaluate either a set of the evaluate either a set of the evaluate evaluate evaluate either a set of the evaluate e	$a \le 0$. Hence, we would need to evaluate either $\frac{1}{x}$ or $-\frac{1}{x}$ at 0, which is not possible. So,				
this function cannot be continuous, for any v	this function cannot be continuous, for any value of <i>a</i> .				

103. Since *f* is already continuous on $(-\infty, -2] \cup [1, \infty)$ (being defined in terms of continuous functions), we need only to focus our attention on the interval [-2,1]. In order for *f* to be continuous at x = -2, we need f(-2) = a(-2) + b. This is equivalent to

$$\underbrace{-(-2)^2 - 10(-2) - 13}_{=3} = -2a + 1$$

In order for f to be continuous at x = 1, we need f(1) = a(1) + b. This is equivalent to $\underbrace{\sqrt{1-1}-9}_{=-9} = a + b.$

As such, we must solve the system

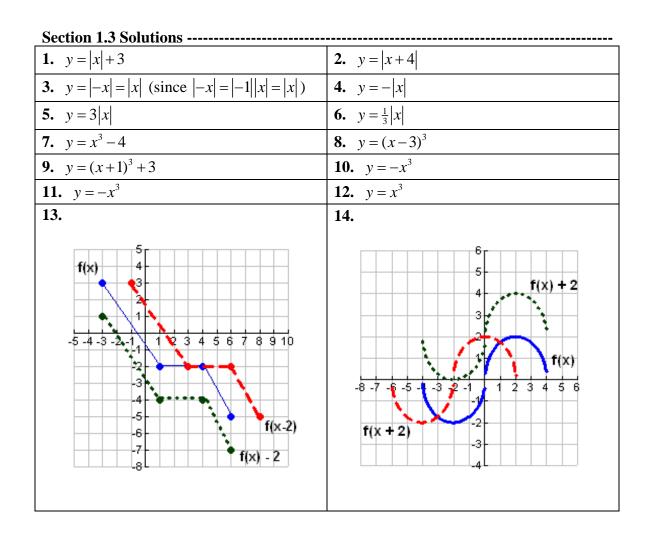
$$\begin{cases} -2a+b=3 & (1) \\ a+b=-9 & (2) \end{cases}$$

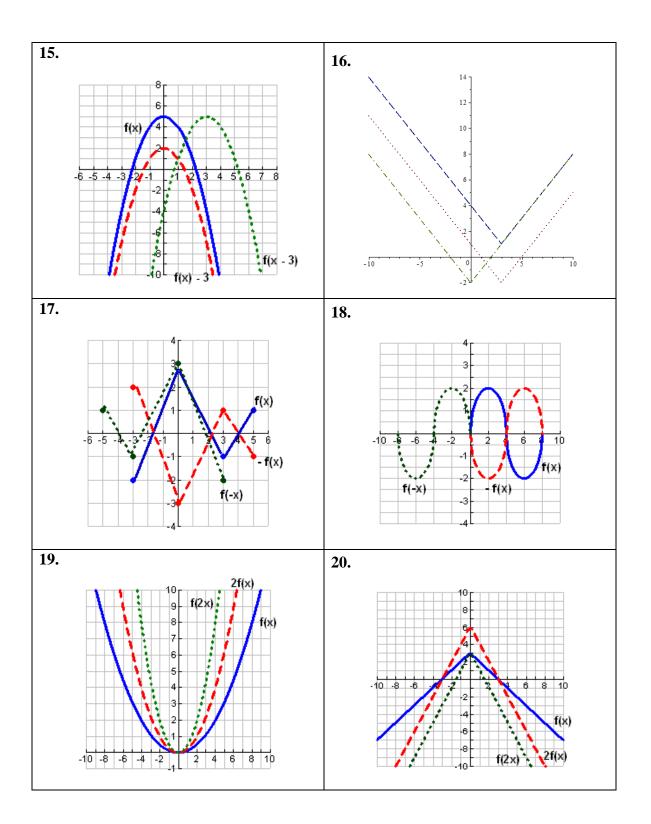
Subtract (1) – (2) to eliminate *b*: -3a = 12, so that a = -4. Substitute this into (2) to find *b*: b = -5.

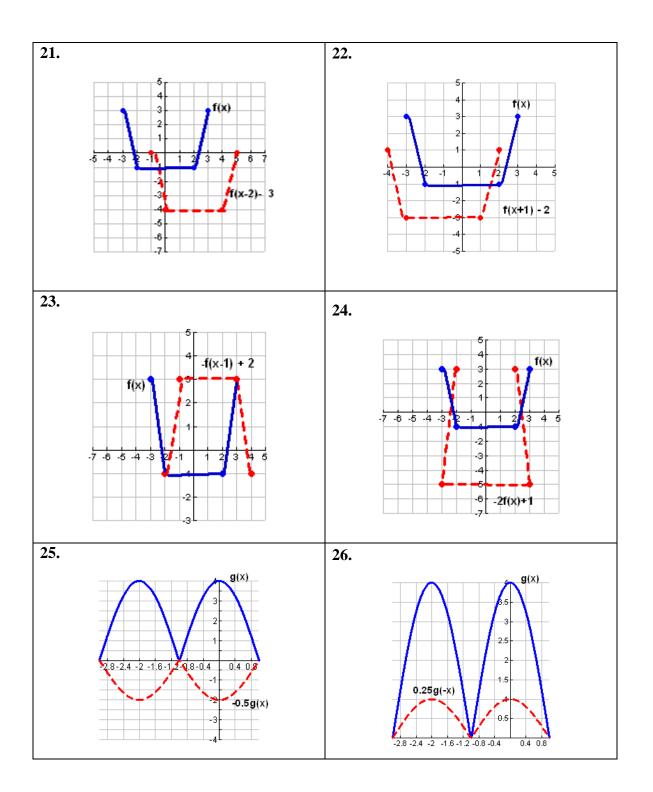
104. The first two expressions in the definition of f must agree at x = -2, and the last two expressions must agree at x = 2. This yields the system:

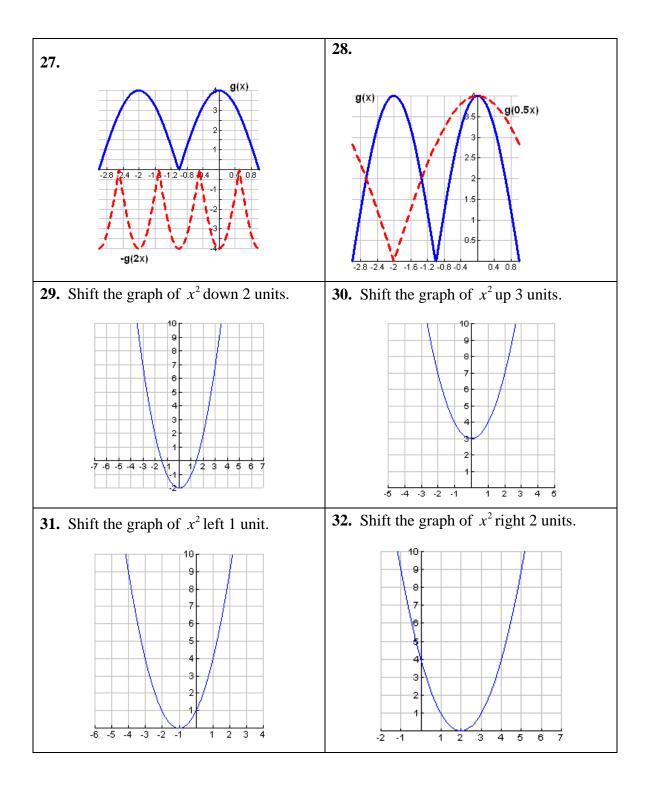
 $\begin{cases} -2(-2) - a + 2b = \sqrt{-2 + a} \\ \sqrt{2 + a} = 2^2 - 4(2) + a + 4 \end{cases}$ which is equivalent to $\begin{cases} 4 - a + 2b = \sqrt{a - 2} & (1) \\ \sqrt{a + 2} = a & (2) \end{cases}$ Solve (2) for *a*: $a + 2 = a^2$ $a^2 - a - 2 = 0$ (a - 2)(a + 1) = 0 $\boxed{a = 2}, \checkmark$ Substitute this into (1) to find *b*: 4 - 2 + 2b = 0, so that $\boxed{b = -1}$. $105. \quad \frac{f(x + h) - f(x)}{h} = \frac{k - k}{h} = 0.$ So, at h = 0 we get $\boxed{f'(x) = 0}$. $106. \quad \frac{f(x + h) - f(x)}{h} = \frac{[m(x + h) + b] - [mx + b]}{h} = \frac{mx + mh + b - mx - b}{h} = \frac{mh}{h} = m$ So, at h = 0 we get $\boxed{f'(x) = m}$.

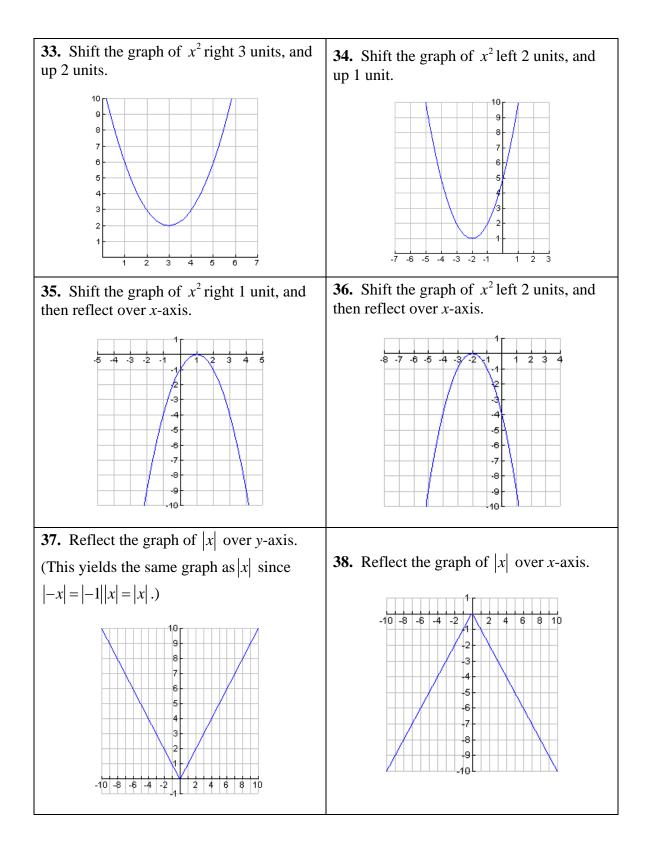
107.

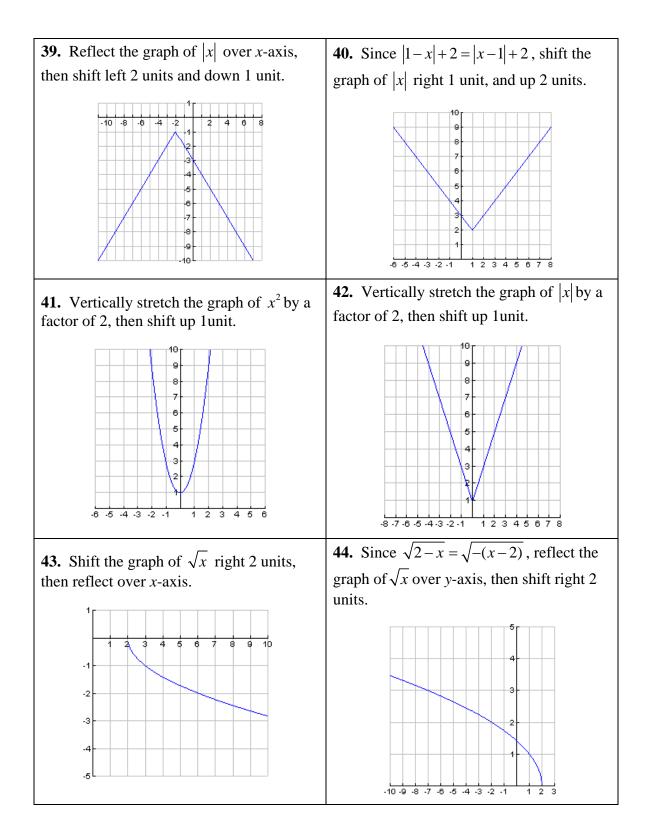

$$\frac{f(x+h) - f(x)}{h} = \frac{\left[a(x+h)^2 + b(x+h) + c\right] - \left[ax^2 + bx + c\right]}{h}$$

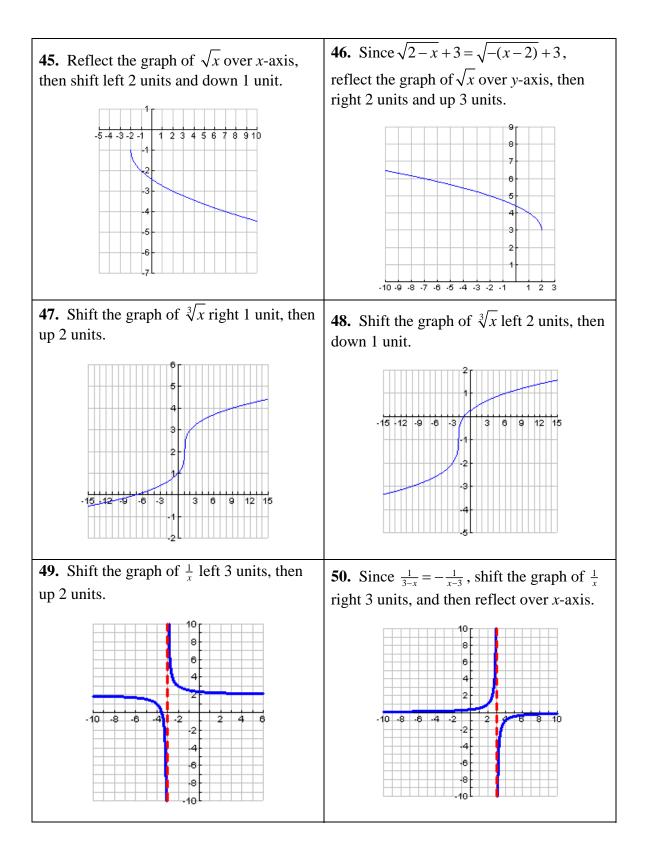

$$= \frac{ax^2 + 2axh + ah^2 + bx + bh + c - ax^2 - bx - c}{h}$$

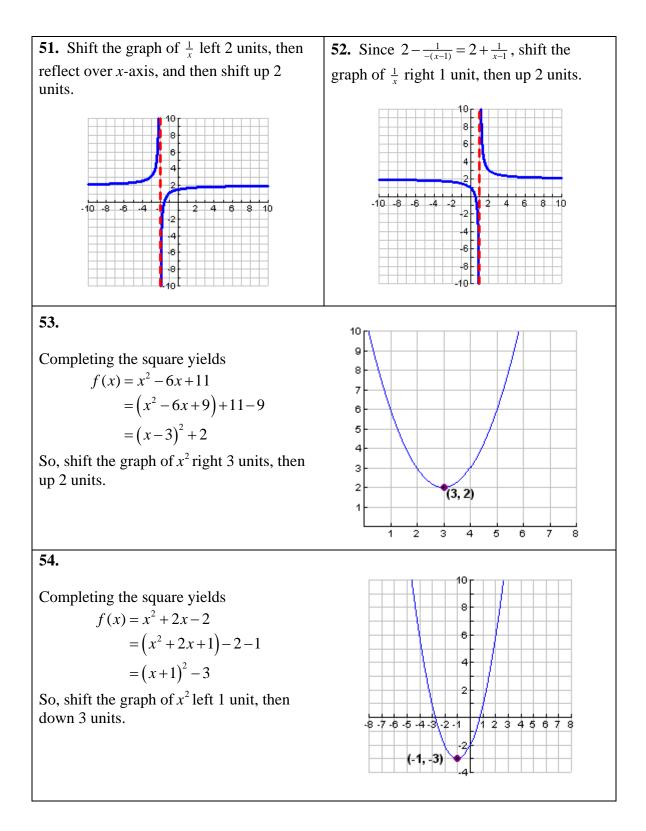

$$= \frac{h(2ax + ah + b)}{h} = 2ax + ah + b$$
So, at $h = 0$ we get $f'(x) = 2ax + b$.

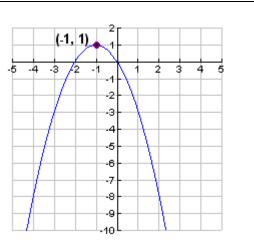

108. Apply the results from problems #117 - 119 on each individual expression (on the OPEN intervals) to obtain


		<i>x</i> < 0,
$f'(x) = \langle$	-3,	0 < x < 4.
	$\left\{2x+4,\right.$	x > 4









Completing the square yields $f(x) = -(x^2 + 2x)$

$$(x) = -(x^{2} + 2x)$$

= -(x^{2} + 2x + 1) + 1
= -(x + 1)^{2} + 1

So, reflect the graph of x^2 over x-axis, then shift left 1 unit, then up 1 unit.

56.

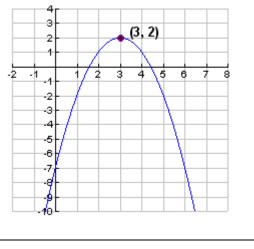
Completing the square yields

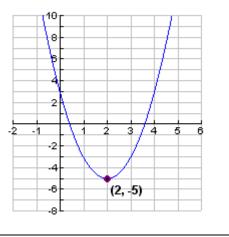
$$f(x) = -x^{2} + 6x - 7$$

$$= -(x^{2} - 6x) - 7$$

$$= -(x^{2} - 6x + 9) - 7 + 9$$

$$= -(x - 3)^{2} + 2$$


So, reflect the graph of x^2 over *x*-axis, then shift right 3 units, then up 2 units.


57.

Completing the square yields

$$f(x) = 2x^{2} - 8x + 3$$

= 2(x² - 4x) + 3
= 2(x² - 4x + 4) + 3 - 8
= 2(x-2)^{2} - 5

So, vertically stretch the graph of x^2 by a factor of 2, then shift right 2 units, then down 5 units.

58.	10r
Completing the square yields $f(x) = 3x^{2} - 6x + 5$ $= 3(x^{2} - 2x) + 5$ $= 3(x^{2} - 2x + 1) + 5 - 3$ $= 3(x - 1)^{2} + 2$ So, vertically stretch the graph of x^{2} by a factor of 3, then shift right 1 unit, then up 2 units.	9 8 7 6 5 4 3 2 (1,2) 1 1 2 3 4
59. Let $x =$ number of hours worked per week. Then, the salary is given by $\overline{S(x) = 10x}$ (in dollars). After 1 year, taking into account the raise, the new salary is $\overline{S(x) = 10x + 50}$. 61. The 2006 taxes would be:	 60. The profit in a rainy year is given by P(x)-10(Cost of 1), where x is the number of pallets sold. Since they are giving away 10 pallets in a rainy year, they don't make a profit on the first 10. So, the profit would be P(x-10). 62. The actual amount administered if the solution of the first 10 and the first 10 and
T(x) = 0.33(x - 6500) 63. This function would be $Q(t) = P(t + 50)$	
64. This function would be $Q(t) = P(t+60)$	
65. a. Use $h = 162$ to get $BSA(w) = \sqrt{\frac{162w}{3,600}} = \sqrt{\frac{9w}{200}}$.	66. a. Use $h = 180$ to get $BSA(w) = \sqrt{\frac{180w}{3,600}} = \sqrt{\frac{w}{20}}$.
b. If she loses 3 kg, the new function is $BSA(w-3) = \sqrt{\frac{9(w-3)}{200}}.$	b. If he gains 5 kg, the new function is $BSA(w+5) = \sqrt{\frac{w+5}{20}}$.
67. (b) is wrong – shift right 3 units.	68. (b) is wrong and (d) is misplaced. The correct sequence of steps would be: $(a) \rightarrow (d) \rightarrow (*) \rightarrow (c)$, where (*) = reflect over <i>x</i> -axis.
69. True. Since $ -x = -1 x = x $.	70. False. $y = \sqrt{-x}$ is the reflection of $y = \sqrt{x}$ over the y-axis.
71. True.	72. True.
73. True	74. False. The shift is <i>a</i> units to the left.
75. The graph of $y = f(x-3)+2$ is the graph of $y = f(x)$ shifted right 3 units, then up 2 units. So, if the point (a,b) is on the graph of $y = f(x)$, then the point $(a+3,b+2)$ is on the graph of the translation $y = f(x-3)+2$.	
j = 0	= -

76. The graph of	y = -f(-x) + 1 is the graph of $y = f(x)$ re	eflected over y-axis, then over	
<i>x</i> -axis, and then sh	ifted up 1 unit. So, if the point (a,b) is a	on the graph of $y = f(x)$,	
then the point $(-a,$	(-b+1) is on the graph of the translation	y = -f(-x) + 1.	
77. We do this in t	three steps:		
f(x)		(a,b)	
f(x+1)	Shift left 1 unit	(a-1,b)	
2f(x+1)	Multiply all outputs by 2	(<i>a</i> -1,2 <i>b</i>)	
2f(x+1)-1	Shift vertically down 1 unit	(a-1, 2b-1)	
So, the point $(a-1)$	(2b-1) is guaranteed to lie on the graph		
78. We do this in t	three steps:		
f(x)		(a,b)	
f(x-3)	Shift right 3 units	(a+3,b)	
-2f(x-3)	Multiply all outputs by -2	(a+3,-2b)	
-2f(x-3)+4	Shift vertically up 4 units	(a+3,-2b+4)	
So, the point $(a+3)$	So, the point $(a+3,-2b+4)$ is guaranteed to lie on the graph.		
79.			
f(x+h) -	$\frac{f(x)}{h} = \frac{(x+h)^2 - x^2}{h} = \frac{x^2 + 2hx + h^2 - x^2}{h}$	$-\frac{h(2x+h)}{2}-2x+h$	
h	h h	h = 2x + h	
So, at $h = 0$ we ge	f'(x) = 2x		
$\frac{g(x+h)-g(x)}{h} = \frac{\left(x+h-1\right)^2 - \left(x-1\right)^2}{h} = \frac{x^2 + hx - x + hx + h^2 - h - x - h + 1 - x^2 + 2x - 1}{h}$			
$=\frac{h(2x+h-2)}{h}=2x+h-2=2(x-1)+h$			
So, at $h = 0$ we get $g'(x) = 2(x-1)$.			
We observe that the graph of g' is obtained by shifting the graph of f' right 1 unit.			

80.

$$\frac{f(x+h)-f(x)}{h} = \frac{\sqrt{x+h} - \sqrt{x}}{h} = \frac{\sqrt{x+h} - \sqrt{x}}{h} \cdot \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}$$

$$= \frac{x+h-x}{h(\sqrt{x+h} + \sqrt{x})} = \frac{1}{\sqrt{x+h} + \sqrt{x}}$$
So, at $h = 0$ we get $f'(x) = \frac{1}{2\sqrt{x}}$.

$$\frac{g(x+h)-g(x)}{h} = \frac{\sqrt{x+h} + 5 - \sqrt{x+5}}{h} = \frac{\sqrt{x+h} + 5 - \sqrt{x+5}}{h} \cdot \frac{\sqrt{x+h} + 5 + \sqrt{x+5}}{\sqrt{x+h} + 5 + \sqrt{x+5}}$$

$$= \frac{x+h+5-x-5}{h(\sqrt{x+h} + 5 + \sqrt{x+5})} = \frac{1}{\sqrt{x+h} + 5 + \sqrt{x+5}}$$
So, at $h = 0$ we get $g'(x) = \frac{1}{2\sqrt{x+5}}$.
We observe that the graph of g' is obtained by shifting the graph of f' left 5 units.
81. $\frac{f(x+h)-f(x)}{h} = \frac{2(x+h)-2x}{h} = \frac{2h}{h} = 2$. So, at $h = 0$ we get $[g'(x)=2]$.
We observe that the graph of f' and g' are the same.
82.

$$\frac{f(x+h)-f(x)}{h} = \frac{[(x+h)^3]-[x^3]}{h} = \frac{x^3 + 3x^2h + 3xh^2 + h^3 - x^3}{h}$$

$$= \frac{h(3x^2 + 3xh + h^2)}{h} = \frac{[3x^2 + 3xh + h^2]}{h}$$
So, at $h = 0$ we get $[f'(x) = 3x^2]$.
We observe that the graph of f' and g' are the same.

Section 1.4 Solutions -----

1.

$$f(x) + g(x) = (2x+1) + (1-x)$$

$$= x+2$$

$$f(x) - g(x) = (2x+1) - (1-x)$$

$$= 2x+1 - 1+x$$

$$= 3x$$

$$f(x) \cdot g(x) = (2x+1)(1-x)$$

$$= 2x+1 - 2x^{2} - x$$

$$= -2x^{2} + x + 1$$

$$\frac{f(x)}{g(x)} = \frac{2x+1}{1-x}$$
Domains:

$$\frac{dom(f+g)}{dom(f-g)} = (-\infty, \infty)$$

$$dom(\frac{f}{g}) = (-\infty, 1) \cup (1, \infty)$$
3.

$$f(x) + g(x) = (2x^{2} - x) + (x^{2} - 4)$$

$$= 3x^{2} - x - 4$$

$$f(x) - g(x) = (2x^{2} - x) - (x^{2} - 4)$$

$$= 3x^{2} - x - 4$$

$$f(x) - g(x) = (2x^{2} - x) - (x^{2} - 4)$$

$$= 2x^{4} - x^{3} - 8x^{2} + 4x$$

$$f(x) - g(x) = (2x^{2} - x) - (x^{2} - 4)$$

$$= 2x^{4} - x^{3} - 8x^{2} + 4x$$

$$f(x) - g(x) = (2x^{2} - x) - (x^{2} - 4)$$

$$= 2x^{4} - x^{3} - 8x^{2} + 4x$$

$$f(x) - g(x) = (2x^{2} - x) - (x^{2} - 4)$$

$$= 2x^{4} - x^{3} - 8x^{2} + 4x$$

$$f(x) - g(x) = (2x^{2} - x) - (x^{2} - 4)$$

$$= 2x^{4} - x^{3} - 8x^{2} + 4x$$

$$f(x) - g(x) = (2x^{2} - x) - (x^{2} - 4)$$

$$= 2x^{4} - x^{3} - 8x^{2} + 4x$$

$$f(x) - g(x) = (2x^{2} - x) - (x^{2} - 4)$$

$$= 2x^{4} - x^{3} - 8x^{2} + 4x$$

$$f(x) - g(x) = (2x^{2} - x) - (x^{2} - 4)$$

$$= 2x^{4} - x^{3} - 8x^{2} + 4x$$

$$f(x) - g(x) = (2x^{2} - x) - (x^{2} - 4)$$

$$= 2x^{4} - x^{3} - 8x^{2} + 4x$$

$$f(x) - g(x) = (2x^{2} - x) - (x^{2} - 4)$$

$$= 2x^{4} - x^{3} - 8x^{2} + 4x$$

$$f(x) - g(x) = (3x + 2) - (x^{2} - 25)$$

$$= 3x^{3} + 2x^{2} - 75x - 50$$

$$\frac{f(x)}{g(x)} = \frac{3x + 2}{x^{2} - 25}$$
Domains:

$$dom(f + g), dom(f - g), dom(fg) = (-\infty, \infty)$$

$$dom(\frac{f}{g}) = (-\infty, -2) \cup (-2, 2) \cup (2, \infty)$$

5.	$f(x) + g(x) = \frac{1}{x} + x = \frac{1 + x^2}{x}$ $f(x) - g(x) = \frac{1}{x} - x = \frac{1 - x^2}{x}$ $f(x) \cdot g(x) = \frac{1}{x} \cdot x = 1$ $\frac{f(x)}{g(x)} = \frac{1}{x} = \frac{1}{x^2}$	$ \frac{\text{Domains:}}{dom(f+g)} \\ dom(f-g) \\ dom(fg) \\ dom\left(\frac{f}{g}\right) $ $= (-\infty, 0) \cup (0, \infty)$
6.	$f(x) + g(x) = \frac{2x+3}{x-4} + \frac{x-4}{3x+2}$ $= \frac{(2x+3)(3x+2) + (x-4)^{2}}{(x-4)(3x+2)}$ $= \frac{6x^{2} + 9x + 4x + 6 + x^{2} - 8x + 16}{(x-4)(3x+2)}$ $= \frac{7x^{2} + 5x + 22}{(x-4)(3x+2)}$ $f(x) - g(x) = \frac{2x+3}{x-4} - \frac{x-4}{3x+2}$ $= \frac{(2x+3)(3x+2) - (x-4)^{2}}{(x-4)(3x+2)}$ $= \frac{6x^{2} + 9x + 4x + 6 - x^{2} + 8x - 16}{(x-4)(3x+2)}$ $= \frac{5x^{2} + 21x - 10}{(x-4)(3x+2)}$	$f(x) \cdot g(x) = \frac{2x+3}{x-4} \cdot \frac{x-4}{3x+2} = \frac{2x+3}{3x+2}$ $\frac{f(x)}{g(x)} = \frac{\frac{2x+3}{x-4}}{\frac{x-4}{3x+2}} = \frac{2x+3}{x-4} \cdot \frac{3x+2}{x-4}$ $= \frac{(2x+3)(3x+2)}{(x-4)^2}$ Domains: $dom(f+g)$ $dom(f-g)$ $dom(fg)$ $dom(\frac{f}{g})$ $dom(\frac{f}{g})$
7.	$f(x) + g(x) = \sqrt{x} + 2\sqrt{x} = 3\sqrt{x}$ $f(x) - g(x) = \sqrt{x} - 2\sqrt{x} = -\sqrt{x}$ $f(x) \cdot g(x) = \sqrt{x} \cdot 2\sqrt{x} = 2x$ $\frac{f(x)}{g(x)} = \frac{\sqrt{x}}{2\sqrt{x}} = \frac{1}{2}$	$\frac{\text{Domains:}}{dom(f+g)} \\ dom(f-g) \\ dom(fg) \\ \end{bmatrix} = [0,\infty) \\ dom\left(\frac{f}{g}\right) = (0,\infty)$
8.	$f(x) + g(x) = \sqrt{x - 1} + 2x^{2}$ $f(x) - g(x) = \sqrt{x - 1} - 2x^{2}$ $f(x) \cdot g(x) = 2x^{2}\sqrt{x - 1}$ $\frac{f(x)}{g(x)} = \frac{\sqrt{x - 1}}{2x^{2}}$	$ \begin{array}{c} \underline{\text{Domains}:}\\ \text{Must have both } x-1 \ge 0 \text{ and } 2x^2 \neq 0. \text{ So,}\\ dom(f+g)\\dom(f-g)\\dom(fg)\\dom\left(\frac{f}{g}\right)\\ \end{array}\right\} = [1,\infty) $

9. $f(x) + g(x) = \sqrt{4 - x} + \sqrt{x + 3}$ $f(x) - g(x) = \sqrt{4 - x} - \sqrt{x + 3}$ $f(x) \cdot g(x) = \sqrt{4 - x} \cdot \sqrt{x + 3}$ $\frac{f(x)}{g(x)} = \frac{\sqrt{4 - x}}{\sqrt{x + 3}} = \frac{\sqrt{4 - x}\sqrt{x + 3}}{x + 3}$	$\frac{\text{Domains:}}{\text{Must have both } 4-x \ge 0 \text{ and } x+3 \ge 0.$ So, $\frac{dom(f+g)}{dom(f-g)} = [-3,4].$ For the quotient, must have both $4-x \ge 0$ and $x+3 > 0$. So, $dom\left(\frac{f}{g}\right) = (-3,4].$	
10. $f(x) + g(x) = \sqrt{1 - 2x} + \frac{1}{x}$ $f(x) - g(x) = \sqrt{1 - 2x} - \frac{1}{x}$ $f(x) \cdot g(x) = \sqrt{1 - 2x} \cdot \frac{1}{x}$ $\frac{f(x)}{g(x)} = \frac{\sqrt{1 - 2x}}{\frac{1}{x}} = x\sqrt{1 - 2x}$	$ \begin{array}{c} \underline{\text{Domains}:}\\ \text{Must have both } 1-2x \ge 0 \text{ and } x \ne 0. \text{ So,}\\ dom(f+g)\\dom(f-g)\\dom(fg)\\dom\left(\frac{f}{g}\right)\\ \end{array}\right\} = (-\infty, 0) \cup (0, \frac{1}{2}] $	
11. $(f \circ g)(x) = 2(x^{2} - 3) + 1 = 2x^{2} - 6 + 1 = 2x^{2} - 5$ $(g \circ f)(x) = (2x + 1)^{2} - 3 = 4x^{2} + 4x + 1 - 3 = 4x^{2} + 4x - 2$ Domains: $dom(f \circ g) = (-\infty, \infty) = dom(g \circ f)$ 12.		
$(f \circ g)(x) = (2-x)^2 - 1 = 4 - 4x + x^2 - 1 = x^2 - 4x + 3$ $(g \circ f)(x) = 2 - (x^2 - 1) = 2 - x^2 + 1 = -x^2 + 3$ <u>Domains</u> : $dom(f \circ g) = (-\infty, \infty) = dom(g \circ f)$		
13. $(f \circ g)(x) = \frac{1}{(x+2)-1} = \frac{1}{x+1}$ $(g \circ f)(x) = \frac{1}{x-1} + 2 = \frac{1+2(x-1)}{x-1} = \frac{1+2x-2}{x-1} = \frac{2x-1}{x-1}$ <u>Domains</u> : $dom(f \circ g) = (-\infty, -1) \cup (-1, \infty), dom(g \circ f) = (-\infty, 1) \cup (1, \infty)$		

14.

$$(f \circ g)(x) = \frac{2}{(2+x)-3} = \frac{2}{x-1}$$

$$(g \circ f)(x) = 2 + \frac{2}{x-3} = \frac{2(x-3)+2}{x-3} = \frac{2x-6+2}{x-3} = \frac{2x-4}{x-3}$$
Domains:

$$dom(f \circ g) = (-\infty, 1) \cup (1, 3) \cup (3, \infty), \quad dom(g \circ f) = (-\infty, 3) \cup (3, \infty)$$
15.

$$(f \circ g)(x) = \left|\frac{1}{|x-1|}\right| = \frac{1}{|x-1|}$$

$$(g \circ f)(x) = \frac{1}{|x-1|}$$
Domains:

$$dom(f \circ g) = (-\infty, 1) \cup (1, \infty)$$

$$dom(g \circ f) = (-\infty, 0) \cup (0, \infty)$$

$$dom(g \circ f) = (-\infty, 0) \cup (0, \infty)$$

$$dom(g \circ f) = (-\infty, 0) \cup (-1, 1) \cup (1, \infty)$$
17.

$$(f \circ g)(x) = \sqrt{(x+5)-1} = \sqrt{x+4}$$

$$(g \circ f)(x) = \sqrt{x-1+5}$$
Domains:

$$dom(f \circ g) : \text{Must have } x+4 \ge 0. \text{ So, } dom(f \circ g) = [-4, \infty).$$

$$dom(g \circ f) : \text{Must have } x-1 \ge 0. \text{ So, } dom(g \circ f) = [1, \infty).$$
18.

$$(f \circ g)(x) = \sqrt{2-(x^2+2)} = \sqrt{2-x^2-2} = \sqrt{-x^2}$$

$$(g \circ f)(x) = (\sqrt{2-x})^2 + 2 = 2-x+2 = 4-x$$
Domains:

$$dom(f \circ g) = [0] \text{ since } -x^2 \ge 0 \text{ only when } x=0. \quad dom(g \circ f) = (-\infty, 2]$$
19.

$$(f \circ g)(x) = \left[(x-4)^{|x|}\right]^3 + 4 = x - 4 + 4 = x$$

$$(g \circ f)(x) = \left[(x^3+4)-4\right]^{|x|} = \left[x^3\right]^{|x|} = x$$
Domains:

$$dom(f \circ g) = (-\infty, \infty) = dom(g \circ f)$$

20.	
$(f \circ g)(x) = \sqrt[3]{\left(x^{\frac{2}{3}} + 1\right)^2 - 1} = \sqrt[3]{x^{\frac{4}{3}} + 2x}$	$\frac{x^{2/3}}{x^{2/3}} + 1 - 1 = \sqrt[3]{x^{4/3} + 2x^{2/3}} = \sqrt[3]{x^{2/3}(x^{2/3} + 2)}$
$(g \circ f)(x) = \left(\sqrt[3]{x^2 - 1}\right)^{\frac{2}{3}} + 1 = \left(x^2 - 1\right)^2 + 1 = x^4 - 2x^2 + 1 + 1 = x^4 - 2x^2 + 2$	
Domains:	
$dom(f \circ g) = (-\infty, \infty) = dom(g \circ f)$	
21.	22.
(f+g)(2) = f(2) + g(2)	(f+g)(10) = f(10) + g(10)
$= \left[2^2 + 10\right] + \sqrt{2-1}$	$= [10^2 + 10] + \sqrt{10 - 1}$
=14+1=15	=110 + 3 = 113
23.	24.
(f-g)(2) = f(2) - g(2)	(f-g)(5) = f(5) - g(5)
$= \left\lceil 2^2 + 10 \right\rceil - \sqrt{2 - 1}$	$= [5^2 + 10] - \sqrt{5-1}$
=14-1=13	$= 35 - 2 = \boxed{33}$
25. $(f \cdot g)(4) = f(4) \cdot g(4)$	26. $(f - a)(5) = f(5) - a(5)$
	$(f \cdot g)(5) = f(5) \cdot g(5)$
$= \left\lfloor 4^2 + 10 \right\rfloor \cdot \sqrt{4} - 1$	$= \left[5^2 + 10\right] \cdot \sqrt{5 - 1}$
$=26\sqrt{3}$	$=35(2)=\overline{70}$
27.	28.
$\left(\frac{f}{g}\right)(10) = \frac{f(10)}{g(10)} = \frac{10^2 + 10}{\sqrt{10 - 1}} = \boxed{\frac{110}{3}}$	$\left(\frac{f}{g}\right)(2) = \frac{f(2)}{g(2)} = \frac{2^2 + 10}{\sqrt{2 - 1}} = \boxed{14}$
29.	30.
$f(g(2)) = f\left(\underbrace{\sqrt{2-1}}_{=1}\right) = 1^2 + 10 = \boxed{11}$	$f(g(1)) = f\left(\underbrace{\sqrt{1-1}}_{=0}\right) = 0^2 + 10 = \boxed{10}$
31.	32.
$g(f(-3)) = g\left(\underbrace{(-3)^2 + 10}_{=19}\right) = \sqrt{19 - 1} = \boxed{3\sqrt{2}}$	$g(f(4)) = g\left(\underbrace{4^2 + 10}_{=26}\right) = \sqrt{26 - 1} = 5$
33. 0 is not in the domain of g, so that	34.
g(0) is not defined. Hence, $f(g(0))$ is undefined.	$g(f(0)) = g\left(\underbrace{0^2 + 10}_{=10}\right) = \sqrt{10 - 1} = \boxed{3}$
	36.
35. $f(g(-3))$ is not defined since $g(-3)$	$g\left(f\left(\sqrt{7}\right)\right) = g\left(\left(\sqrt{7}\right)^2 + 10\right)$
in not defined.	$= g(17) = \sqrt{17 - 1} = 4$
	1

37.	38.
$(f \circ g)(4) = f(g(4)) = f(\sqrt{4-1})$	$(g \circ f)(-3) = g(f(-3)) = g((-3)^2 + 10)$
$= f\left(\sqrt{3}\right) = \left(\sqrt{3}\right)^2 + 10 = \boxed{13}$	$= g(19) = \sqrt{19 - 1} = \boxed{3\sqrt{2}}$
39.	40.
$f(g(1)) = f\left(\underbrace{2(1)+1}_{=3}\right) = \boxed{\frac{1}{3}}$	$f(g(1)) = f\left(\frac{1}{2-1}_{=1}\right) = 1^2 + 1 = \boxed{2}$
$g(f(2)) = g\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right) + 1 = \boxed{2}$	$g(f(2)) = g\left(\underbrace{2^2+1}_{=5}\right) = \frac{1}{2-5} = \boxed{-\frac{1}{3}}$
41. $f(g(1)) = f\left(\underbrace{1^2 + 2}_{=3}\right)$ Since 3 is not in	42. $f(g(1)) = f\left(\underbrace{1^2 + 1}_{2}\right) = \sqrt{3 - 2} = \boxed{1}$
the domain of f , this is undefined.	
Likewise, $g(f(2))$ is undefined since 2 is	$g(f(2)) = g\left(\underbrace{\sqrt{3-2}}_{1}\right) = 1^2 + 1 = 2$
not in the domain of <i>f</i> . 43.	<u> </u>
$f(g(1)) = f\left(\underbrace{1+3}_{=4}\right) = \frac{1}{ 4-1 } = \boxed{\frac{1}{3}}$	44. $f(g(1)) = f\left(\underbrace{ 2(1)-3 }_{-3}\right) = \frac{1}{1} = \boxed{1}$
$g(f(2)) = g\left(\frac{1}{ 2-1 }\right) = 1+3=4$	$g(f(2)) = g\left(\frac{1}{2}\right) = 2(\frac{1}{2}) - 3 = 2$
45.	46.
$f(g(1)) = f\left(\underbrace{1^2 + 5}_{=6}\right) = \sqrt{6 - 1} = \sqrt{5}$	$f(g(1)) = f\left(\frac{1}{\underbrace{1-3}_{=-2}}\right) = \sqrt[3]{-\frac{1}{2}-3} = \boxed[3]{-\frac{7}{2}}$
$g(f(2)) = g\left(\underbrace{\sqrt{2-1}}_{=1}\right) = 1^2 + 5 = \boxed{6}$	$g(f(2)) = g\left(\underbrace{\sqrt[3]{2-3}}_{=-1}\right) = \frac{1}{-1-3} = \boxed{-\frac{1}{4}}$
	48.
	$f(g(1)) = f(4-1^2) = f(3) = \frac{3}{2-3} = \boxed{-3}$
47. $f(g(1))$ is undefined since $g(1)$ is not defined.	g(f(2)) is undefined since $f(2)$ is not defined.
$g(f(2)) = g\left(\frac{1}{2^2 - 3}\right) = g(1)$, which is not	
defined. So, this is also undefined.	

	50.	
49.	$f(g(1)) = f((1-3)^{\frac{1}{3}}) = f((-2)^{\frac{1}{3}})$	
$f(g(1)) = f(1^{2} + 2(1) + 1) = f(4)$		
$=(4-1)^{\frac{1}{3}}=\overline{\sqrt[3]{3}}$	$= \left(1 - \left((-2)^{\frac{1}{3}}\right)^2\right)^{\frac{1}{2}} = \left(\underbrace{1 - 2^{\frac{2}{3}}}_{<0}\right)^{\frac{1}{2}},$	
$g(f(2)) = g((2-1)^{\frac{1}{3}}) = g(1)$	which is undefined	
$= 1^2 + 2(1) + 1 = 4$	g(f(2)) is undefined since $f(2)$ is not	
	defined.	
51.	52.	
$f(g(x)) = \mathbf{Z}\left(\frac{x-1}{\mathbf{Z}}\right) + 1 = x - 1 + 1 = x$	$f(g(x)) = \frac{(3x+2)-2}{3} = \frac{3x}{3} = x$	
$g(f(x)) = \frac{(2x+1)-1}{2} = \frac{2x}{2} = x$	$g(f(x)) = \beta\left(\frac{x-2}{\beta}\right) + 2 = x - 2 + 2 = x$	
53.	54.	
$f(g(x)) = \sqrt{(x^2 + 1) - 1} = \sqrt{x^2} = x = x$ Since $x \ge 1$	$f(g(x)) = 2 - \left(\sqrt{2 - x}\right)^2 = 2 - (2 - x)$ $= 2 - 2 + x = x$	
$g(f(x)) = \left(\sqrt{x-1}\right)^2 + 1 = (x-1) + 1 = x$	$g(f(x)) = \sqrt{2 - (2 - x^2)} = \sqrt{2 - 2 + x^2} = \sqrt{x^2} = x$	
	56.	
55.	$f(g(x)) = \left[5 - \left(5 - x^3\right)\right]^{\frac{1}{3}} = \left[5 - 5 + x^3\right]^{\frac{1}{3}}$	
$f(g(x)) = \frac{1}{\frac{1}{x}} = x \qquad g(f(x)) = \frac{1}{\frac{1}{x}} = x$	$=\left[x^3\right]^{y_3}=x$	
$\frac{1}{x}$ $\frac{1}{x}$	$g(f(x)) = 5 - \left[(5-x)^{\frac{1}{3}} \right]^3 = 5 - (5-x)$	
	=5-5+x=x	
57.		
$f(g(x)) = 4\left(\frac{\sqrt{x+9}}{2}\right)^2 - 9 = 4\left(\frac{x+9}{4}\right) - 9 = x$		
$\sqrt{(4x^2-9)}$	$+9 \sqrt{4x^2} - 2x$	
$g(f(x)) = \frac{\sqrt{(4x^2 - 9) + 9}}{2} = \frac{\sqrt{4x^2}}{2} = \frac{2x}{2} = x$		
58.		
$f(g(x)) = \sqrt[3]{8\left(\frac{x^3+1}{8}\right) - 1} = \sqrt[3]{x^3} = x$		
$g(f(x)) = \frac{\left(\sqrt[3]{8x-1}\right)^3 + 1}{8} = \frac{8x-1+1}{8} = x$		
59. $f(g(x)) = \frac{1}{\frac{x+1}{x} - 1} = \frac{1}{\frac{x+1-x}{x}} = \frac{1}{\frac{1}{x}} = x$		

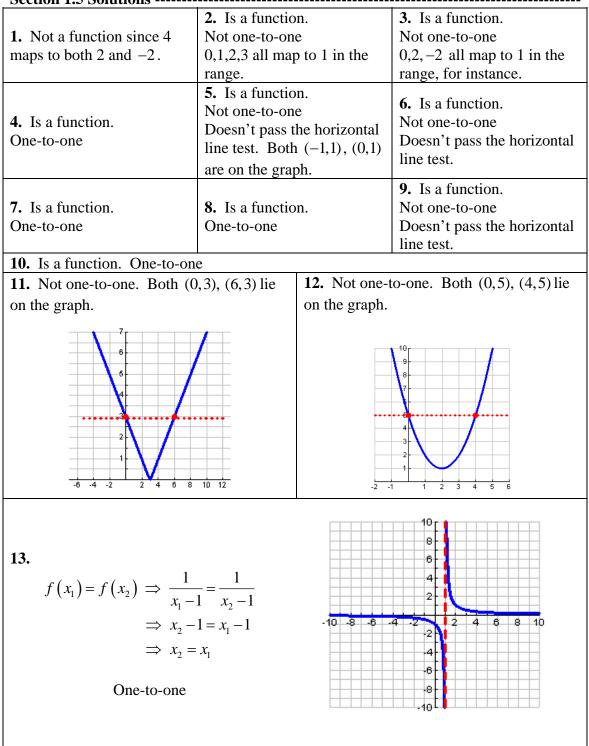
60. $f(g(x)) = g(f(x)) = \sqrt{25 - (\sqrt{25 - x^2})^2} = \sqrt{25 - (25 - x^2)} = \sqrt{x^2} = x$ since $x \ge 0$.			
61. $f(x) = 2x^2 + 5x$ $g(x) = 3x - 1$	62. The most natural pairs are:		
	$f(x) = \frac{1}{x} g(x) = x^2 + 1$		
	$f(x) = \frac{1}{x+1}$ $g(x) = x^2$		
63. $f(x) = \frac{2}{ x }$ $g(x) = x - 3$	64. $f(x) = \sqrt{x}$ $g(x) = 1 - x^2$		
65. $f(x) = \frac{3}{\sqrt{x-2}}$ $g(x) = x+1$	66. $f(x) = \frac{x}{3x+2}$ $g(x) = \sqrt{x}$		
67. $F(C(K)) = \frac{9}{5}(K - 273.15) + 32$			
68. We need to calculate the composition fu	nction $(K \circ C)(F)$.		
Solve $F = \frac{9}{5}C + 32$ for C: $C = \frac{5}{9}(F - 32)$			
Solve $C = K - 273.15$ for <i>K</i> : $K = C + 273.7$	15		
So, $(K \circ C)(F) = K(C(F)) = K(\frac{5}{9}(F - 32)) =$	$=\frac{5}{9}(F-32)+273.15=\overline{\frac{5}{9}F+255.37}$.		
Thus, $32^{\circ}F$ corresponds to $\frac{5}{9}(32) + 255.37 =$	273.15K, and		
212° F corresponds to $\frac{5}{9}(212) + 255.37$	= 373.15K.		
69. First, solve $p = 3000 - \frac{1}{2}x$ for x: $x = 2($	3000 - p) = 6000 - 2p		
a. $C(x(p)) = C(6000 - 2p) = 2000 + 10(600)$	(0-2p) = 62,000 - 20p		
b. $R(x(p)) = 100(6000 - 2p) = 600,000 - 20$	00 <i>p</i>		
c. Profit $P = R - C$. So,			
P(x(p)) = R(x(p)) - C			
x x	= (600,000 - 200p) - (62,000 - 20p)		
= 538,000 - 180 p			
70. First, solve $p = 10,000 - \frac{1}{4}x$ for x: $x = 4(10,000 - p) = 40,000 - 4p$			
a. $C(x(p)) = C(40,000 - 4p) = 30,000 + 5(40,000 - 4p) = 230,000 - 20p$			
b. $R(x(p)) = 1000(40,000 - 4p) = 40,000,000 - 4000p$			
c. Profit $P = R - C$. So,			
P(x(p)) = R(x(p)) - C(x(p))			
= (40,000,000 - 4000p) - (230,000 - 20p)			
= 39,770,000 - 3,980 p			
71. a. $(C \circ n)(t) = C(n(t)) = 10(50t - t^2) + 1375 = -10t^2 + 500t + 1375$			
b. $(C \circ n)(16) = C(n(16)) = -10(16)^2 + 500(16) + 1375 = 6815$			
This is the cost of production on a day when the assembly line was running for 16 hours; this cost is \$6,815,000.			

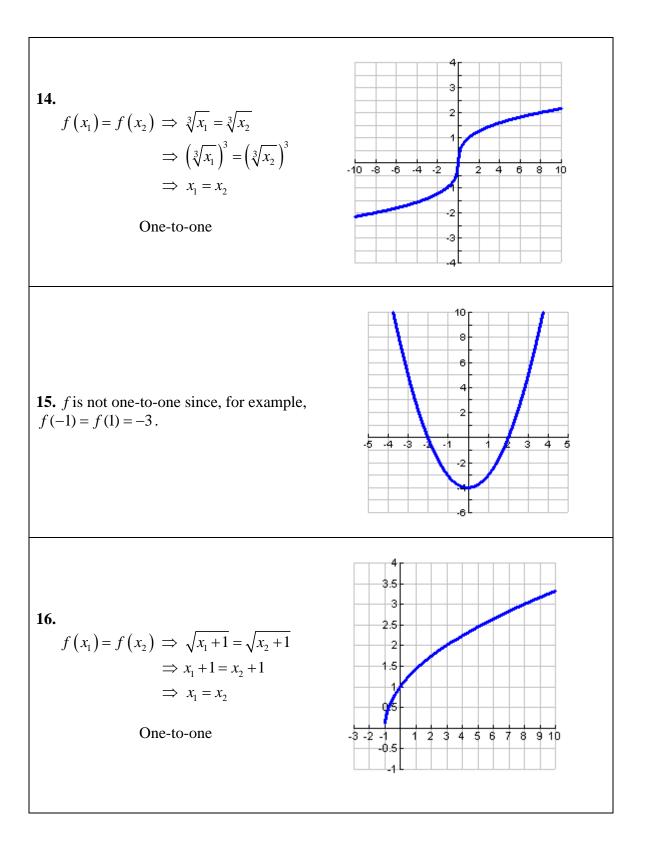
72. a.
$$(C \circ n)(t) = C(n(t)) = 8(100t - 4t^2) + 2375 = -32t^2 + 800t + 2375$$
b. $(C \circ n)(24) = C(n(24)) = -32(24)^2 + 800(24) + 2375 = 3143$ This is the cost of production on a day when the assembly line was running for 24 hours;
this cost is \$3,143,000.**73.** a. $A(r(t)) = \pi (10t - 0.2t^2)^2$ **b.** $A(r(7)) = \pi (10(7) - 0.2(7)^2)^2 = 11,385$ square miles**74.** a. $A(r(t)) = \pi (8t - 0.1t^2)^2$ **b.** $A(r(5)) = \pi (8(5) - 0.1(5)^2)^2 = 4,418$ square miles**75.** Must exclude -2 from the domain.**76.** Must also exclude -2 from the domain.**77.** $(f \circ g)(x) = f(g(x))$, not $f(x) \cdot g(x)$ **78.** Didn't distribute " - " to all parts of $g(x)$. Should have been:
 $f(x) - g(x) = (x + 2) - (x^2 - 4)$
 $= x + 2 - x^2 + 4$
 $= -x^2 + x + 6$ **79.** The mistake made was that $(f + g)$
was multiplied by 2 when it ought to have
been evaluated at 2.**81.** False.
The domain of the sum, difference, or
product of two functions is the intersection
of their domains, the domain of the
quotient is the set obtained by intersecting
the two domains and then excluding all
values where the denominator equals 0.**83.** True**83.** True**83.** True**84.** False**85.**
 $(g \circ f)(x) = \frac{1}{(x+a)-a} = \frac{1}{x}$ **Domain**: $x \neq 0$

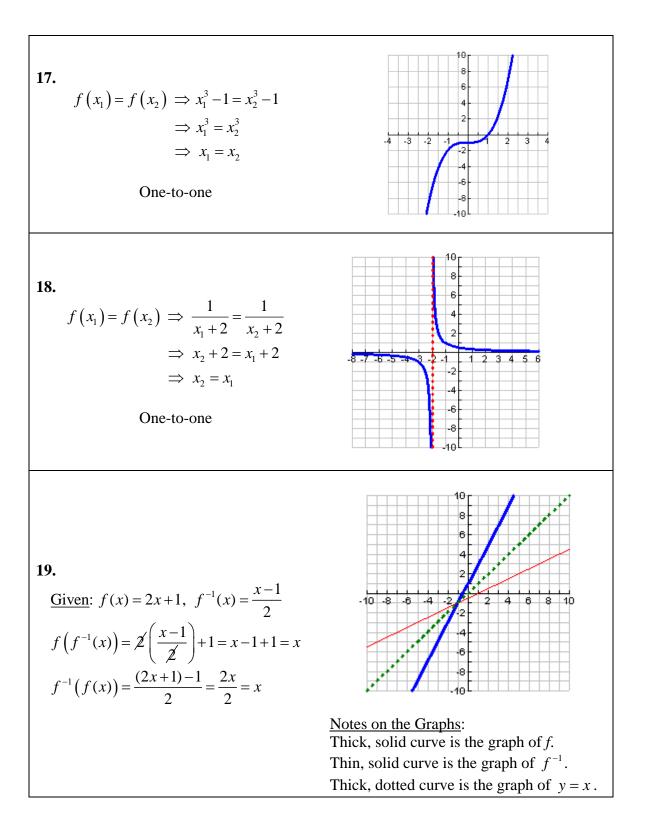
86.

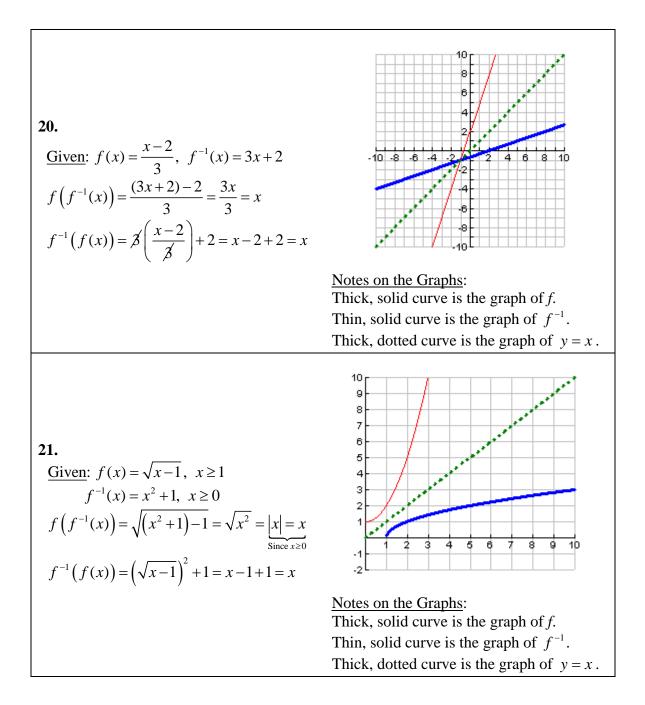
$$(g \circ f)(x) = \frac{1}{(ax^{2} + bx + c) - c} = \frac{1}{ax^{2} + bx}$$

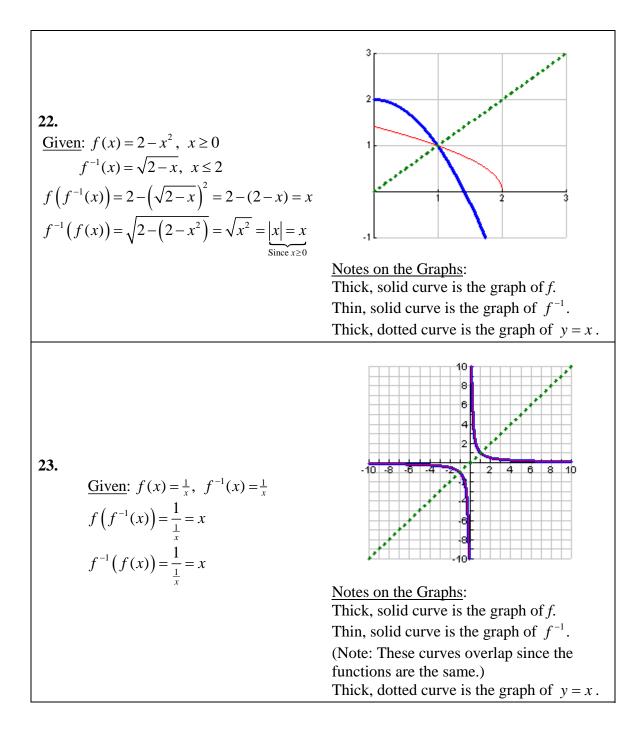
$$= \frac{1}{x(ax + b)}$$
Domain: $x \neq 0, -\frac{b}{a}, c$
87.
 $(g \circ f)(x) = (\sqrt{x + a})^{2} - a = x + a - a = x$
Domain: Must have $x + a \ge 0$, so that
 $x \ge -a$. So, domain is $[-a, \infty)$.
88. $(g \circ f)(x) = \frac{1}{\left(\frac{1}{x^{a}}\right)^{b}} = \frac{1}{\frac{1}{x^{ab}}} = x^{ab}$
Domain: $(0, \infty)$.
89. Observe that $\frac{F(x+h) - F(x)}{h} = \frac{(x+h) - x}{h} = \frac{h}{h} = 1$. So, at $h = 0$ we get $F'(x) = 1$.
Also, $\frac{G(x+h) - G(x)}{h} = \frac{(x+h)^{2} - x^{2}}{h} = \frac{x^{2} + 2hx + h^{2} - x^{2}}{h} = \frac{h(2x+h)}{h} = 2x + h$
So, at $h = 0$ we get $G'(x) = 2x$.
Finally, observe that
$$\frac{H(x+h) - H(x)}{h} = \frac{\left[(x+h) + (x+h)^{2}\right] - \left[x+x^{2}\right]}{h}$$

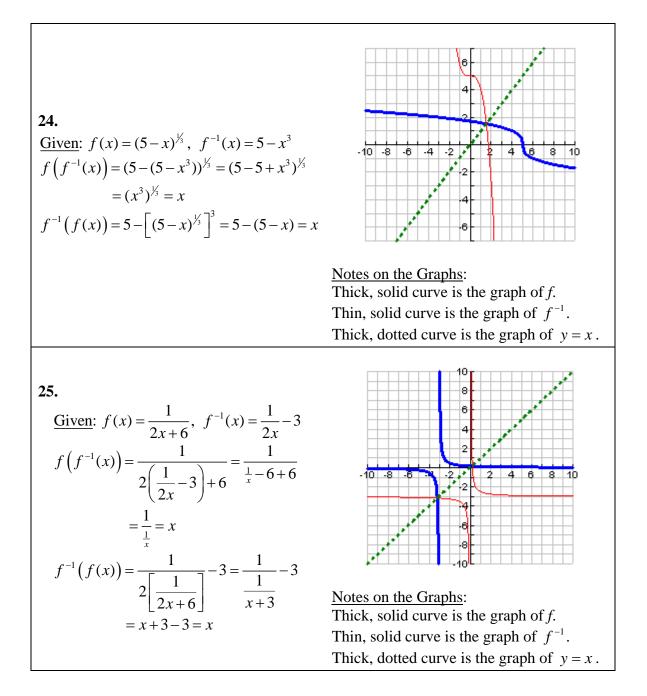

$$= \frac{(x+h) - x}{h} + \frac{x^{2} + 2hx + h^{2} - x^{2}}{h} = \frac{h}{h} + \frac{h(2x+h)}{h} = 1 + 2x + h$$

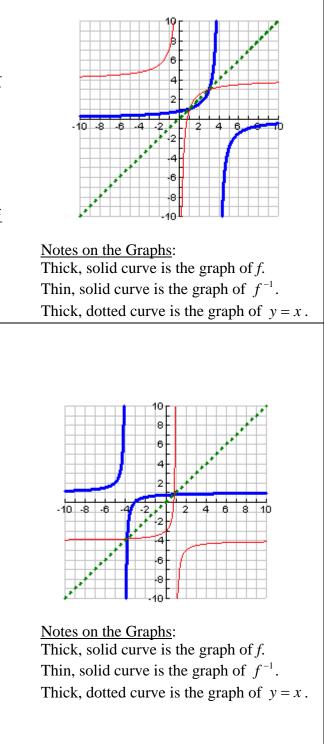

So, at h = 0 we get H'(x) = 1 + 2x = F'(x) + G'(x). As such, we conclude that it appears as though H'(x) = F'(x) + G'(x).

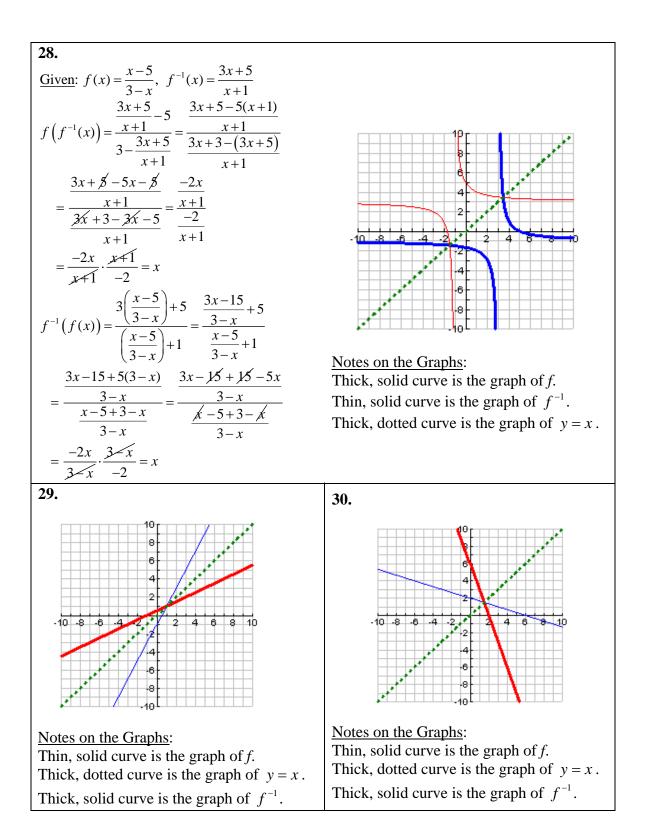

90. Observe that $\frac{F(x+h) - F(x)}{h} = \frac{\sqrt{x+h} - \sqrt{x}}{h} = \frac{\sqrt{x+h} - \sqrt{x}}{h} \cdot \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}$ $= \frac{x+h-x}{h(\sqrt{x+h} + \sqrt{x})} = \frac{1}{\sqrt{x+h} + \sqrt{x}}$ So, at h = 0 we get $F'(x) = \frac{1}{2\sqrt{x}}$. Also, $\frac{G(x+h) - G(x)}{h} = \frac{\left[(x+h)^3 + 1\right] - \left[x^3 + 1\right]}{h} = \frac{x^3 + 3x^2h + 3xh^2 + 1 + h^3 - x^3 - 1}{h}$ $= \frac{h(3x^2 + 3xh + h^2)}{h} = \frac{\left[3x^2 + 3xh + h^2\right]}{h}$ So, at h = 0 we get $G'(x) = 3x^2$. Finally, observe that $\frac{H(x+h) - H(x)}{h} = \frac{\left(\sqrt{x+h} - \left[(x+h)^3 + 1\right]\right) - \left(\sqrt{x} - \left[x^3 + 1\right]\right)}{h}$ $= \frac{\sqrt{x+h} - \sqrt{x}}{h} - \frac{\left[(x+h)^3 + 1\right] - \left[x^3 + 1\right]}{h}$ $= \frac{1}{\sqrt{x+h} + \sqrt{x}} - (3x^2 + 3xh + h^2)$ So, at h = 0 we get $H'(x) = \frac{1}{-3x^2} - 3x^2 = F'(x) - G'(x)$. As such we conclude that it

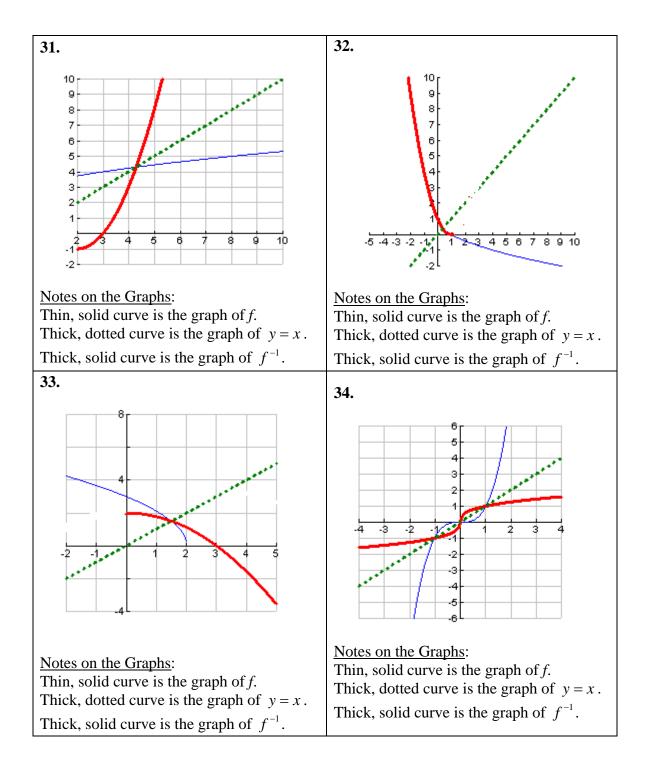

So, at h = 0, we get $H'(x) = \frac{1}{2\sqrt{x}} - 3x^2 = F'(x) - G'(x)$. As such, we conclude that it appears as though H'(x) = F'(x) - G'(x).


91. Observe that $\frac{F(x+h) - F(x)}{h} = \frac{5-5}{h} = 0$. So, at h = 0 we get F'(x) = 0. Also, $\frac{G(x+h) - G(x)}{h} = \frac{\sqrt{x+h-1} - \sqrt{x-1}}{h} = \frac{\sqrt{x+h-1} - \sqrt{x-1}}{h} \cdot \frac{\sqrt{x+h-1} + \sqrt{x-1}}{\sqrt{x+h-1} + \sqrt{x-1}}$ $=\frac{x+h-1-x+1}{h(\sqrt{x+h-1}+\sqrt{x-1})}=\frac{1}{\sqrt{x+h-1}+\sqrt{x-1}}$ So, at h = 0 we get $G'(x) = \frac{1}{2\sqrt{x-1}}$. Finally, observe that $\frac{H(x+h) - H(x)}{h} = \frac{5\sqrt{x+h-1} - 5\sqrt{x-1}}{h} = 5 \left| \frac{\sqrt{x+h-1} - \sqrt{x-1}}{h} \right| = \frac{5}{\sqrt{x+h-1} + \sqrt{x-1}}.$ Hence, $H'(x) = \frac{5}{2\sqrt{x-1}} \neq F'(x)G'(x)$. So, we conclude that it appears as though $H'(x) \neq F'(x)G'(x)$ **92.** Observe that $\frac{F(x+h) - F(x)}{h} = \frac{(x+h) - x}{h} = \frac{h}{h} = 1$. So, at h = 0 we get F'(x) = 1. Also, $\frac{G(x+h) - G(x)}{h} = \frac{\sqrt{x+h+1} - \sqrt{x+1}}{h} = \frac{\sqrt{x+h+1} - \sqrt{x+1}}{h} \cdot \frac{\sqrt{x+h+1} + \sqrt{x+1}}{\sqrt{x+h+1} + \sqrt{x+1}}$ $=\frac{x+h-1-x+1}{h(\sqrt{x+h+1}+\sqrt{x+1})}=\frac{1}{\sqrt{x+h+1}+\sqrt{x+1}}$ So, at h = 0 we get $G'(x) = \frac{1}{2\sqrt{x+1}}$. Finally, observe that $\frac{H(x+h) - H(x)}{h} = \frac{\frac{x+h}{\sqrt{x+h+1}} - \frac{x}{\sqrt{x+1}}}{h} = \frac{(x+h)\sqrt{x+1} - x\sqrt{x+h+1}}{h\sqrt{x+1}\sqrt{x+h+1}}$ $=\frac{(x+h)\sqrt{x+1} - x\sqrt{x+h+1}}{h\sqrt{x+1}\sqrt{x+h+1}} \cdot \frac{(x+h)\sqrt{x+1} + x\sqrt{x+h+1}}{(x+h)\sqrt{x+1} + x\sqrt{x+h+1}}$ $=\frac{(x+h)^{2}(x+1)-x^{2}(x+h+1)}{h\sqrt{x+1}\sqrt{x+h+1}\left[(x+h)\sqrt{x+1}+x\sqrt{x+h+1}\right]}$ $=\frac{x^{3}+2hx^{2}+h^{2}x+x^{2}+2hx+h^{2}-x^{3}-x^{2}h-x^{2}}{h\sqrt{x+1}\sqrt{x+h+1}\left[(x+h)\sqrt{x+1}+x\sqrt{x+h+1}\right]}$ $=\frac{\hbar \left(x^{2}+hx+2x+h\right)}{\hbar \sqrt{x+1}\sqrt{x+1}\sqrt{x+h+1}\left[(x+h)\sqrt{x+1}+x\sqrt{x+h+1}\right]}$ So, $H'(x) = \frac{x^2 + 2x}{(x+1)\left\lceil 2x\sqrt{x+1} \right\rceil} = \frac{x(x+2)}{2x(x+1)\sqrt{x+1}} = \frac{x+2}{2(x+1)\sqrt{x+1}} \neq \frac{F'(x)}{G'(x)}.$





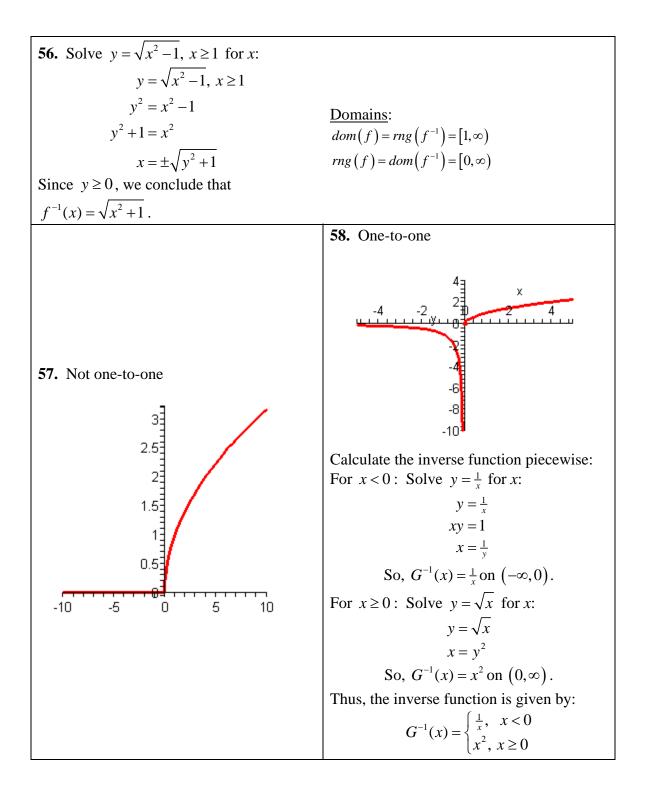


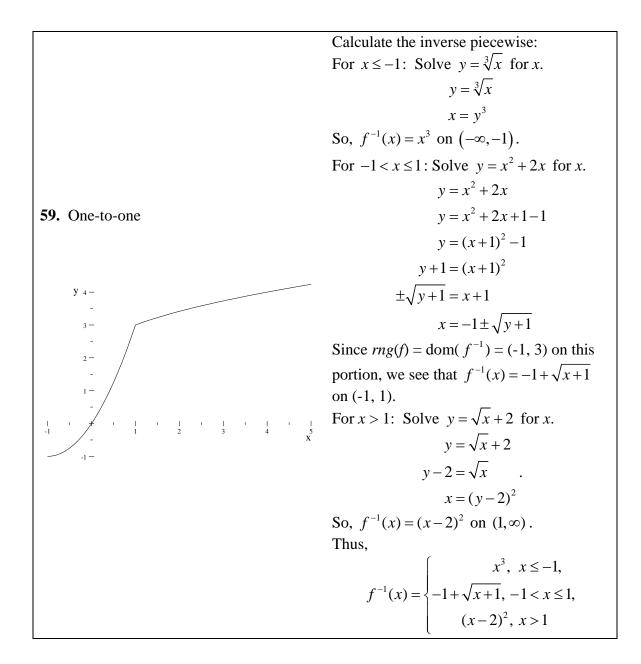

Given:
$$f(x) = \frac{3}{4-x}, f^{-1}(x) = 4 - \frac{3}{x}$$

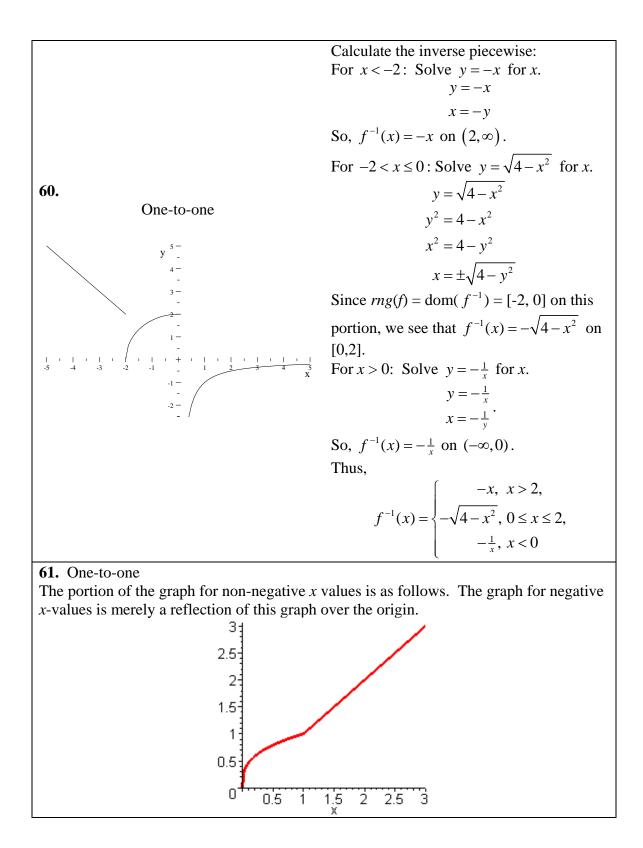
 $f(f^{-1}(x)) = \frac{3}{4-(4-\frac{3}{x})} = \frac{3}{4-4+\frac{3}{x}}$
 $= 3 \cdot \frac{x}{3} = x$
 $f^{-1}(f(x)) = 4 - \frac{3}{\frac{3}{4-x}} = 4 - \cancel{3} \cdot \frac{4-x}{\cancel{3}}$
 $= 4 - 4 + x = x$

27.

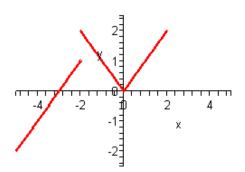
$$\underbrace{\operatorname{Given:}}_{x \to 1} f(x) = \frac{x+3}{x+4}, \ f^{-1}(x) = \frac{3-4x}{x-1} \\
f\left(f^{-1}(x)\right) = \frac{\frac{3-4x}{x-1}}{\frac{3-4x}{x-1}+4} = \frac{\frac{3-4x+3(x-1)}{x-1}}{\frac{3-4x+3(x-1)}{x-1}} \\
= \frac{\frac{\cancel{3}-4x}{x-1}+4}{\frac{\cancel{3}-4x+3x-\cancel{3}}{x-1}} = \frac{\frac{-x}{x-1}}{\frac{-1}{x-1}} \\
= \frac{\frac{-x}{\cancel{x-1}} \cdot \frac{\cancel{x-1}}{-1}}{\frac{\cancel{x-1}}{x-1}} = x \\
f^{-1}(f(x)) = \frac{3-4\left(\frac{x+3}{x+4}\right)}{\left(\frac{x+3}{x+4}\right)-1} = \frac{3-\frac{4x+12}{x+4}}{\frac{\cancel{x+3}}{x+4}-1} \\
= \frac{\frac{3x+\cancel{2}-4x-\cancel{2}}{x+4}}{\frac{\cancel{x}+3-\cancel{x}-4}{x+4}} = \frac{\frac{-x}{x+4}}{\frac{-1}{x+4}} \\
= \frac{-x}{\cancel{x+4}} \cdot \frac{\cancel{x+4}}{-1} = x$$




35.	36.
<u>Notes on the Graphs</u> : Thin, solid curve is the graph of <i>f</i> . Thick, dotted curve is the graph of $y = x$. Thick, solid curve is the graph of f^{-1} .	<u>Notes on the Graphs</u> : Thin, solid curve is the graph of <i>f</i> . Thick, dotted curve is the graph of $y = x$. Thick, solid curve is the graph of f^{-1} .
37. Solve $y = -3x + 2$ for <i>x</i> :	Domains:
$x = -\frac{1}{3}(y-2)$	$dom(f) = rng(f^{-1}) = (-\infty, \infty)$
Thus, $f^{-1}(x) = -\frac{1}{3}(x-2) = -\frac{1}{3}x + \frac{2}{3}$.	$rng(f) = dom(f^{-1}) = (-\infty, \infty)$
38. Solve $y = 2x + 3$ for <i>x</i> :	Domains:
$x = \frac{1}{2}(y-3)$	$dom(f) = rng(f^{-1}) = (-\infty, \infty)$
Thus, $f^{-1}(x) = \frac{1}{2}(x-3)$.	$rng(f) = dom(f^{-1}) = (-\infty, \infty)$
39. Solve $y = x^3 + 1$ for <i>x</i> :	Domains:
$x = \sqrt[3]{y-1}$	$dom(f) = rng(f^{-1}) = (-\infty, \infty)$
Thus, $f^{-1}(x) = \sqrt[3]{x-1}$.	$rng(f) = dom(f^{-1}) = (-\infty, \infty)$
40. Solve $y = x^3 - 1$ for <i>x</i> :	Domains:
$x = \sqrt[3]{y+1}$	$dom(f) = rng(f^{-1}) = (-\infty, \infty)$
Thus, $f^{-1}(x) = \sqrt[3]{x+1}$.	$rng(f) = dom(f^{-1}) = (-\infty, \infty)$
41. Solve $y = \sqrt{x-3}$ for <i>x</i> :	Domains:
$x = y^2 + 3$	$dom(f) = rng(f^{-1}) = [3,\infty)$
Thus, $f^{-1}(x) = x^2 + 3$.	$rng(f) = dom(f^{-1}) = [0,\infty)$
42. Solve $y = \sqrt{3-x}$ for <i>x</i> :	Domains:
$x = 3 - y^2$	$dom(f) = rng(f^{-1}) = (-\infty, 3]$
Thus, $f^{-1}(x) = 3 - x^2$.	$rng(f) = dom(f^{-1}) = [0,\infty)$


43. Solve $y = x^2 - 1$ for *x*: Domains: $dom(f) = rng(f^{-1}) = [0,\infty)$ $x = \sqrt{y+1}$ $rng(f) = dom(f^{-1}) = [-1,\infty)$ Thus, $f^{-1}(x) = \sqrt{x+1}$. **44.** Solve $y = 2x^2 + 1$ for *x*: $2x^2 = v - 1$ Domains: $x = \pm \sqrt{\frac{y-1}{2}}$ (since $x \ge 0$) $dom(f) = rng(f^{-1}) = [0,\infty)$ $rng(f) = dom(f^{-1}) = [1,\infty)$ Thus, $f^{-1}(x) = \sqrt{\frac{x-1}{2}}$. **45.** Solve $y = (x+2)^2 - 3$ for x: $y + 3 = (x + 2)^2$ Domains: $dom(f) = rng(f^{-1}) = [-2,\infty)$ $\sqrt{y+3} = x+2$ (since $x \ge -2$) $rng(f) = dom(f^{-1}) = [-3,\infty)$ $-2 + \sqrt{y+3} = x$ Thus, $f^{-1}(x) = -2 + \sqrt{x+3}$. **46.** Solve $y = (x-3)^2 - 2$ for x: $v + 2 = (x - 3)^2$ Domains: $dom(f) = rng(f^{-1}) = [3,\infty)$ $\sqrt{y+2} = x-3$ (since $x \ge 3$) $rng(f) = dom(f^{-1}) = [-2,\infty)$ $3 + \sqrt{v+2} = x$ Thus, $f^{-1}(x) = 3 + \sqrt{x+2}$. **47.** Solve $y = \frac{2}{x}$ for *x*: Domains: xy = 2 $dom(f) = rng(f^{-1}) = (-\infty, 0) \cup (0, \infty)$ $x = \frac{2}{n}$ $rng(f) = dom(f^{-1}) = (-\infty, 0) \cup (0, \infty)$ Thus, $f^{-1}(x) = \frac{2}{x}$. **48.** Solve $y = -\frac{3}{x}$ for *x*: Domains: yx = -3 $dom(f) = rng(f^{-1}) = (-\infty, 0) \cup (0, \infty)$ $x = -\frac{3}{n}$ $rng(f) = dom(f^{-1}) = (-\infty, 0) \cup (0, \infty)$ Thus, $f^{-1}(x) = -\frac{3}{x}$. **49.** Solve $y = \frac{2}{3-x}$ for *x*: (3-x)y = 2Domains: 3v - xv = 2 $dom(f) = rng(f^{-1}) = (-\infty, 3) \cup (3, \infty)$ xy = 3y - 2 $rng(f) = dom(f^{-1}) = (-\infty, 0) \cup (0, \infty)$ $x = \frac{3y-2}{y}$ Thus, $f^{-1}(x) = \frac{3x-2}{x} = 3 - \frac{2}{x}$.

50. Solve $y = \frac{7}{x+2}$ for <i>x</i> :	
(x+2)y=7	Domains:
2y + xy = 7	$\frac{1}{dom(f)} = rng(f^{-1}) = (-\infty, -2) \cup (-2, \infty)$
xy = 7 - 2y	
$x = \frac{7 - 2y}{y}$	$rng(f) = dom(f^{-1}) = (-\infty, 0) \cup (0, \infty)$
Thus, $f^{-1}(x) = \frac{7-2x}{x}$.	
51. Solve $y = \frac{7x+1}{5-x}$ for <i>x</i> :	
y(5-x) = 7x + 1	
5y - xy = 7x + 1	Domains:
-7x - xy = 1 - 5y	$dom(f) = rng(f^{-1}) = (-\infty, 5) \cup (5, \infty)$
-x(7+y) = 1-5y	$rng(f) = dom(f^{-1}) = (-\infty, -7) \cup (-7, \infty)$
$x = \frac{5y-1}{7+y}$	
Thus, $f^{-1}(x) = \frac{5x-1}{x+7}$.	
52. Solve $y = \frac{2x+5}{7+x}$ for <i>x</i> :	
y(7+x) = 2x + 5	
xy + 7y = 2x + 5	Domains:
-2x + xy = 5 - 7y	$dom(f) = rng(f^{-1}) = (-\infty, -7) \cup (-7, \infty)$
x(y-2) = 5 - 7y	$rng(f) = dom(f^{-1}) = (-\infty, 2) \cup (2, \infty)$
$x = \frac{5-7y}{y-2}$	
Thus, $f^{-1}(x) = \frac{5-7x}{x-2}$.	
53. Solve $y = \frac{1}{\sqrt{x}}$ for <i>x</i> :	
$y = \frac{1}{\sqrt{x}}$	
$y\sqrt{x} = 1$	Domains:
	$dom(f) = rng(f^{-1}) = (0,\infty)$
$\sqrt{x} = \frac{1}{y}, y > 0$	$rng(f) = dom(f^{-1}) = (0,\infty)$
$x = \frac{1}{y^2}, \ y > 0$	
Thus, $f^{-1}(x) = \frac{1}{x^2}$	


54. Solve $y = \frac{x}{\sqrt{x+1}}$, x > -1, for x: $y = \frac{x}{\sqrt{x+1}}$ $v\sqrt{x+1} = x$ $v^2(x+1) = x^2$ $v^2 x + v^2 = x^2$ $x^2 - xy^2 - y^2 = 0$ Domains: $x = \frac{y^2 \pm \sqrt{y^4 + 4y^2}}{2} \qquad \overline{dom(f)} = rng(f^{-1}) = (-1, \infty)$ $rng(f) = dom(f^{-1}) = (-\infty, \infty)$ $x = \frac{y^2 \pm y\sqrt{y^2 + 4}}{2}$ Since $y\sqrt{y^2+4} > y^2$, we know that eventually $y^2 - y\sqrt{y^2 + 4} \le -1$, which cannot occur because of the initial restriction on x. Hence, $f^{-1}(x) = \frac{x^2 \pm x\sqrt{x^2 + 4}}{2}$ 55. Solve $y = \sqrt{\frac{x+1}{x-2}}$ for x: $y = \sqrt{\frac{x+1}{x-2}}$ <u>Note</u>: We must have $\frac{x+1}{x-2} \ge 0$ for domain $y^2 = \frac{x+1}{x-2}$ of *f*. $y^{2}(x-2) = x+1$ Domains: $x(y^2-1) = 1+2y^2$ $\overline{dom(f)} = rng(f^{-1}) = (-\infty, -1] \cup (2, \infty)$ $rng(f) = dom(f^{-1}) = [0,1) \cup (1,\infty)$ $x = \frac{2y^2 + 1}{y^2 - 1}$ So, $f^{-1}(x) = \frac{2x^2 + 1}{x^2 - 1}$.

62. Not one-to-one

(Note: Should also have the graph of $y = x^2$, $x \ge 2$, above. The present curve would have an open hole at (2,2), and this newly-added piece would have a closed hole at (2,4) and extend upward to the right quadratically.)

63. Solve $y = \frac{9}{5}x + 32$ for *x*:

$$y-32 = \frac{9}{5}x$$

 $\frac{5}{9}(y-32) = x$

So, $f^{-1}(x) = \frac{5}{9}(x-32)$.

The inverse function represents the conversion from degrees Fahrenheit to degrees Celsius.

64. Solve $y = \frac{5}{9}(x-32)$ for *x*:

$$\frac{9}{5}y = x - 32$$

 $\frac{9}{5}y + 32 = x$

So, $C^{-1}(x) = \frac{9}{5}x + 32$. The inverse function represents the conversion from degrees Celsius to degrees Fahrenheit.

65. Let x = number of boats entered. The cost function is $C(x) = \begin{cases} 250x, & 0 \le x \le 10\\ 2500 + 175(x - 10), & x > 10 \end{cases}$

To calculate $C^{-1}(x)$, we calculate the inverse of each piece separately: For $0 \le x \le 10$: Solve y = 250x for x: $x = \frac{y}{250}$. So, $C^{-1}(x) = \frac{x}{250}$, for $0 \le x \le 2500$. For x > 10: Solve y = 175x + 750 for x: $x = \frac{y - 750}{175}$. So, $C^{-1}(x) = \frac{x - 750}{175}$, for x > 2500. Thus, the inverse function is given by:

$$C^{-1}(x) = \begin{cases} \frac{x}{250}, & 0 \le x \le 2500\\ \frac{x-750}{175}, & x > 2500 \end{cases}$$

66. Let x = number of long-distance minutes. The cost function is $C(x) = \begin{cases} 0.39x, & 0 \le x \le 10\\ \underbrace{3.9 + 0.12(x - 10)}_{= 0.12x + 2.7}, & x > 10 \end{cases}$

To calculate $C^{-1}(x)$, we calculate the inverse of each piece separately: For $0 \le x \le 10$: Solve y = 0.39x for x: $x = \frac{y}{0.39}$. So, $C^{-1}(x) = \frac{x}{0.39}$, for $0 \le x \le 3.9$. For x > 10: Solve y = 0.12x + 2.7 for x: $x = \frac{y-2.7}{0.12}$. So, $C^{-1}(x) = \frac{x-2.7}{0.12}$, for x > 3.9. Thus, the inverse function is given by:

$$C^{-1}(x) = \begin{cases} \frac{x}{0.39}, & 0 \le x \le 3.9\\ \frac{x-2.7}{0.12}, & x > 3.9 \end{cases}$$

67. Let x = number of hours worked. Then, the take home pay is given by

$$E(x) = \underbrace{7x}_{\substack{\text{\$7 per hour,}\\\text{for x hours}}} - \underbrace{0.25(7x)}_{\substack{\text{Amount withheld}\\\text{for taxes}}} = 5.25x.$$

To calculate E^{-1} , solve y = 5.25x for x: $x = \frac{y}{5.25}$. So, $E^{-1}(x) = \frac{x}{5.25}$, $x \ge 0$.

The inverse function tells you how many hours you need to work to attain a certain take home pay.

68. Let x = number of hours worked.

Since the hourly rate for overtime pay is 1.5(8) = 12 dollars per hour, we see that the weekly earnings are described by the following function:

$$E(x) = \begin{cases} 8x, & 0 \le x \le 40\\ 320 + 12(x-40), & x > 40\\ Pay \text{ for first} & Amount of overtime \\ 40 \text{ hours} & Pay \end{cases}, \quad x > 40 = \begin{cases} 8x, & 0 \le x \le 40\\ 12x-160, & x > 40 \end{cases}$$

To calculate $E^{-1}(x)$, we calculate the inverse of each piece separately: For $0 \le x \le 40$: Solve y = 8x for x: $x = \frac{y}{8}$. So, $E^{-1}(x) = \frac{x}{8}$, for $0 \le x \le 320$. For x > 40: Solve y = 12x - 160 for x: $x = \frac{y+160}{12}$. So, $E^{-1}(x) = \frac{x+160}{12}$, for x > 320. Thus, the inverse function is given by:

$$E^{-1}(x) = \begin{cases} \frac{x}{8}, & 0 \le x \le 320\\ \frac{x+160}{12}, & x > 320 \end{cases}$$

The inverse function tells you how many hours you need to work to attain a certain take home pay.

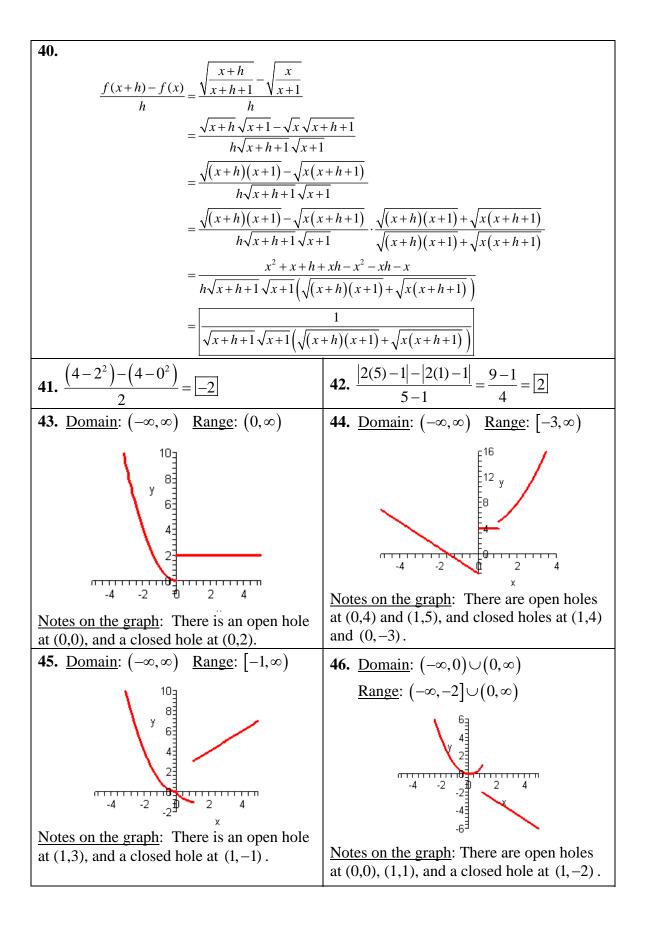
69. The domain is [0, 24] since the function measures temperature for one day.

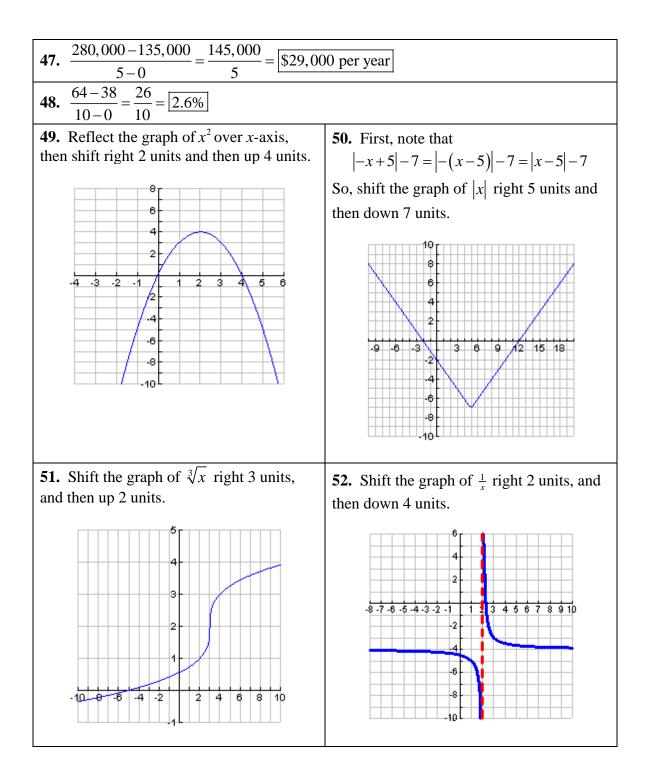
Since the function is increasing, the range is [T(0), T(24)], which is [97.5528, 101.70].

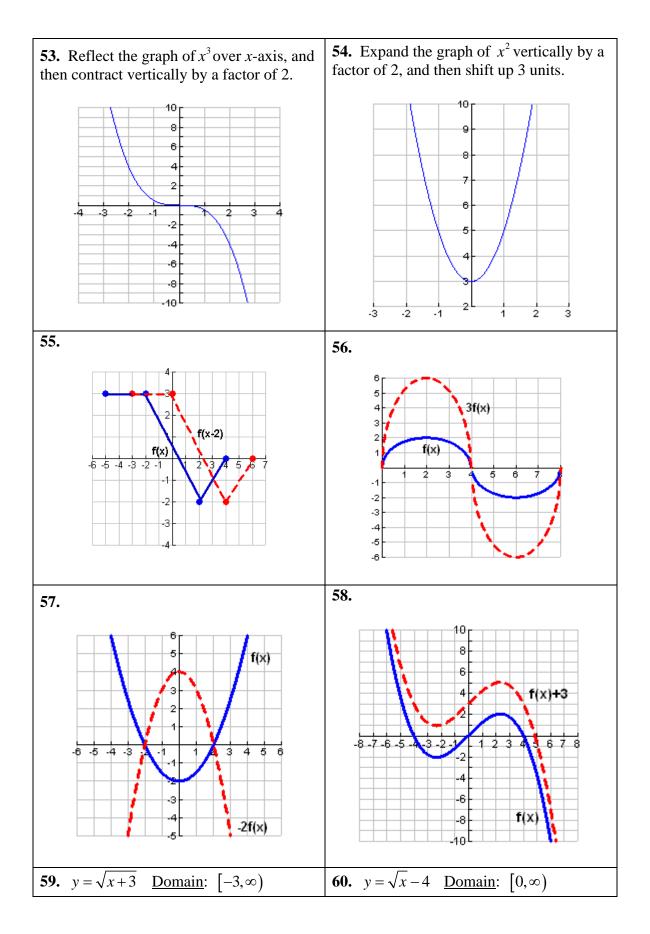
70. Solve the following expression for t : $y = \frac{1}{2} \int \frac{1}{2} \int \frac{1}{2} \frac{1}{2$	$= 0.0003(t-24)^3 + 101.70:$	
$y = 0.0003(t - 24)^3 + 101.70$		
$y - 101.70 = 0.0003(t - 24)^3$		
y - 101.70 - (t - t)	$(24)^3$	
$\frac{y - 101.70}{0.0003} = (t - 2)$	27)	
$\sqrt[3]{\frac{y-101.70}{0.0003}} = t - 24$		
V 0.0003		
$t = 24 + \sqrt[3]{\frac{y - 101.70}{0.0003}}$		
Thus, $T^{-1}(t) = 24 + \sqrt[3]{\frac{t - 101.70}{0.0003}} = 24 + \sqrt[3]{\frac{t - 101.70}{\frac{3}{10.000}}} = 24 + \sqrt[3]{\frac{10,000(t - 101.70)}{3}}.$		
71. Domain of T^{-1} = Range of $T = [97.5528]$, 101.70] (from #69)	
Range of T^{-1} = Domain of $T = [0, 24]$ (from	#69)	
72. $T^{-1}(99.5) = 24 + \sqrt[3]{\frac{99.5 - 101.70}{0.0003}} \approx 4.57$. So, this occurs at around 4:30am.		
73. Not a function since the graph does not pass the vertical line test.		
74. $dom(f^{-1}) = rng(f) = [0,\infty)$, not	75. False. In fact, no even function can be	
	one-to-one since the condition f(x) = f(-x) implies that the horizontal	
$[2,\infty).$	line test is violated.	
76. False. The function $f(x) = 0$ is odd,	77. False. Consider $f(x) = x$. Then,	
but not one-to-one.	$f^{-1}(x) = x \text{ also.}$	
78. True. $dom(f)$ is inside $(-\infty, 0)$ and	79. $(b,0)$ since the x and y coordinates of	
$rng(f)$ is inside $(0,\infty)$. Since they are	all points on the graph of f are switched to get the corresponding points on the graph	
switched for f^{-1} , $dom(f^{-1})$ is inside $(0,\infty)$	of f^{-1} .	
and $rng(f^{-1})$ is inside $(-\infty, 0)$. Thus, the		
graph of f^{-1} is in Quadrant IV.		
80. If $(a,0)$ is on the graph of f , then $(0,a)$ is on the graph of f^{-1} . This is its y-		
intercept.		
81. The equation of the unit circle is $x^2 + y^2 = 1$. The portion in Quadrant I is given by		
$y = \sqrt{1 - x^2}, \ 0 \le x \le 1 \ .$		
To calculate the inverse of this function, solve for <i>x</i> :		
$y^2 = 1 - x^2$, which gives us $x = \sqrt{1 - y^2}$		
So, $f^{-1}(x) = \sqrt{1-x^2}$, $0 \le x \le 1$. The domain and range of both are [0,1].		

82. Let $f(x) = \frac{c}{x}$, $c \neq 0$. To calculate the inverse of this function, solve for x: $y = \frac{c}{r} \implies x = \frac{c}{v} \implies yx = c \implies y = \frac{c}{r}$. Thus, $f(x) = f^{-1}(x), x \neq 0$. **83.** As long as $m \neq 0$ (that is, while the **84.** Assume $m \neq 0$. Then, solving graph of f is not a horizontal line), it is y = mx + b for x yields: $x = \frac{y-b}{m}$. one-to-one. So, the inverse of f(x) = mx + b is $f^{-1}(x) = \frac{x-b}{m}$. **85.** We know from earlier problems that rational functions of the form $g(x) = \frac{1}{1 + 1}$ are one-to-one. Further, if a rational function possesses two vertical asymptotes, it is impossible for it to be one-to-one. As such, we choose a such that the numerator cancels with one of the factors in the denominator. The choice of a that does this is a = 4. Then, $f(x) = \frac{x-2}{x^2-4} = \frac{x-2}{(x-2)(x+2)} = \frac{1}{x+2}$. Observe also that $dom(f) = rng(f^{-1}) = (-\infty, -2) \cup (-2, \infty)$ $dom(f^{-1}) = rng(f) = (-\infty, 0) \cup (0, \infty)$ To calculate $f^{-1}(x)$, solve $y = \frac{1}{x+2}$ for x: $y = \frac{1}{x+2} \Rightarrow y(x+2) = 1 \Rightarrow yx+2y=1 \Rightarrow x = \frac{1-2y}{y}$ So, we conclude that $f^{-1}(x) = \frac{1-2x}{x}$. **86.** The only point guaranteed to be on the graph of $f^{-1}(x)$ is (b, a). 87. a. Solve y = 2x + 1 for x: $y = 2x + 1 \implies x = \frac{y - 1}{2}$. So, $f^{-1}(x) = \frac{x - 1}{2}$. **b.** $\frac{f(x+h) - f(x)}{h} = \frac{(2(x+h)+1) - (2x+1)}{h} = \frac{2x+2h+1-2x-1}{h} = 2.$ So, evaluating at h = 0 yields f'(x) = 2c. $\frac{f^{-1}(x+h) - f^{-1}(x)}{h} = \frac{\frac{1}{2}(x+h-1) - \frac{1}{2}(x-1)}{h} = \frac{\frac{1}{2}x + \frac{1}{2}h - \frac{1}{2} - \frac{1}{2}x + \frac{1}{2}}{h} = \frac{1}{2}.$ So, evaluating at h = 0 yields $(f^{-1})'(x) = \frac{1}{2}$. **d.** $\frac{1}{f'(f^{-1}(x))} = \frac{1}{f'(\frac{1}{2})} = \frac{x-1}{2} = (f^{-1})'(x)$

88. a. Solve
$$y = x^2$$
, $x > 0$ for x : $x = y^2 \Rightarrow x = \pm \sqrt{y}$. So, $f^{-1}(x) = \sqrt{x}$.
b. $\frac{f(x+h)-f(x)}{h} = \frac{(x+h)^2 - x^2}{h} = \frac{x^2 + 2hx + h^2 - x^2}{h} = \frac{h(2x+h)}{h} = 2x + h$.
So, evaluating at $h = 0$ yields $f'(x) = 2x$.
c.
 $\frac{f^{-1}(x+h)-f^{-1}(x)}{h} = \frac{\sqrt{x+h} - \sqrt{x}}{h} = \frac{\sqrt{x+h} - \sqrt{x}}{h} \cdot \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}} = \frac{x+h-x}{h(\sqrt{x+h} + \sqrt{x})} = \frac{1}{\sqrt{x+h} + \sqrt{x}}$.
So, evaluating at $h = 0$ yields $(f^{-1})'(x) = \frac{1}{2\sqrt{x}}$.
d. $\frac{1}{f'(f^{-1}(x))} = \frac{1}{f'(\sqrt{x})} = \frac{1}{2\sqrt{x}} = (f^{-1})'(x)$
89. a. Solve $y = \sqrt{x+2}$, $x > -2$ for x : $y = \sqrt{x+2} \Rightarrow y^2 = x+2 \Rightarrow x = y^2 - 2$. So,
 $f^{-1}(x) = x^2 - 2$, $x \ge 0$.
 $\frac{f(x+h)-f(x)}{h} = \frac{\sqrt{x+h} - 2-\sqrt{x+2}}{h} = \frac{\sqrt{x+h} - 2-\sqrt{x+2}}{h} \cdot \frac{\sqrt{x+h} + 2+\sqrt{x+2}}{\sqrt{x+h} + 2+\sqrt{x+2}}$
b. $\frac{f(x+h) - f(x)}{h} = \frac{\sqrt{x+h} - 2-\sqrt{x+2}}{h} = \frac{1}{\sqrt{x+h} + 2+\sqrt{x+2}}$.
So, evaluating at $h = 0$ yields $f'(x) = \frac{1}{2\sqrt{x+2}}$.
 $\frac{(f^{-1})(x+h) - (f^{-1})(x)}{h} = \frac{[(x+h)^2 - 2] - (x^2 - 2)}{h} = \frac{x^2 + 2hx + h^2 - 2 - x^2 + 2}{h}$.
 $\frac{h(2x+h)}{h} = 2x + h$.
So, evaluating at $h = 0$ yields $(f^{-1})'(x) = 2x$.
d. $\frac{1}{f'(f^{-1}(x))} = \frac{1}{f'(x^2 - 2)} = \frac{1}{\frac{1}{2\sqrt{x^2 - 2} + 2}} = \frac{1}{2x} = (f^{-1})'(x)$.


90. a. Solve
$$y = \frac{1}{x+1}$$
, $x > -1$ for x:
 $y = \frac{1}{x+1} \Rightarrow y(x+1) = 1 \Rightarrow yx + y = 1 \Rightarrow x = \frac{1-y}{y}$, $y > 0$. So, $f^{-1}(x) = \frac{1-x}{x}$, $x > 0$.
b.
 $\frac{f(x+h)-f(x)}{h} = \frac{\frac{1}{x+h+1} - \frac{1}{x+1}}{h} = \frac{(x+1)-(x+h+1)}{h(x+h+1)(x+1)} = \frac{-h}{h(x+h+1)(x+1)} = \frac{-1}{(x+h+1)(x+1)}$
So, evaluating at $h = 0$ yields $f'(x) = -\frac{1}{(x+1)^2}$.
c. $\frac{(f^{-1})(x+h)-(f^{-1})(x)}{h} = \frac{\frac{1-(x+h)}{x+h} - \frac{1-x}{x}}{h} = \frac{[1-(x+h)]x-(1-x)(x+h)}{hx(x+h)}$
 $= \frac{x-x^2-hx-x-h+x^2+xh}{hx(x+h)} = -\frac{1}{x(x+h)}$
So, evaluating at $h = 0$ yields $(f^{-1})'(x) = \frac{-1}{x^2}$.
d. $\frac{1}{f'(f^{-1}(x))} = \frac{1}{f'(\frac{1-x}{x})} = \frac{1}{(\frac{1-x}{x}+1)^2} = -(\frac{1}{x}+1)^2 = -(\frac{1}{x})^2 = (f^{-1})'(x)$


Chapter 1 Review Solutions			
1. Yes		2. Yes	
3. No, since both $(0, 6)$ and $(0, -6)$ satisfy the equation, so that the graph fails the vertical line test.		4. No, since the grap line test.	h fails the vertical
5. Yes	6. Yes	7. No, since the graph fails the vertical line test.	8. Yes
9. (a) 2		10. (a) 2	
(b) 4		(b) -2	
(c) when $x = -3, 4$		(c) when $x \approx -2, 3.2$	
11. (a) 0		12. (a) 7	
(b) -2		(b) -3	
(c) when $x \approx -5, 2$		(c) never	
13. $f(3) = 4(3) - 7 = 5$		14. $F(4) = 4^2 + 4(4)$	-3 = 29
15.			
$f(-7) \cdot g(3) = (4(-7) - 7) \cdot 3^2 + 2(3) + 4 $		16. $\frac{F(0)}{g(0)} = \left -\frac{3}{4} \right $	
= -35 19	= -665	g(0) 4	


17.			
$\left \frac{f(2) - F(2)}{g(0)} = \frac{(4(2) - 7) - (2)}{4}\right $	$2^2 + 4(2) - 3$	18. $f(3+h) =$	=4(3+h)-7=5+4h
$\frac{1-9}{4} = \boxed{-2}$			
19.			
$\frac{f(3+h) - f(3)}{h} = \frac{(4(3+h) - 7) - (4(3) - 7)}{h}$ $= \frac{5 + 4h - 5}{h} = \boxed{4}$			
	h	h	
	$=\frac{3+}{$	$\frac{4n-5}{b} = 4$	
20.		n	
	$) = \frac{\left(\left(t+h\right)^2 + 4\right)}{\left(t+h\right)^2 + 4}$	$(t+h)-3\Big)-\Big(t^2$	+4t-3)
h		h	<u> </u>
	$=\frac{t^2+2ht+h^2}{2}$	$\frac{h}{t+4t+4h-3-t}$	$t^2 - 4t + 3$
$=\frac{2ht+h^{2}+4h}{h}=\frac{h(2t+h+4)}{h}=\boxed{2t+h+4}$ 21. $(-\infty,\infty)$ 22. $(-\infty,\infty)$ 23. $(-\infty,-4)\cup(-4,\infty)$			
21. $(-\infty,\infty)$	22. $(-\infty,\infty)$		23. $(-\infty, -4) \cup (-4, \infty)$
24. (−∞,∞)	25. We need $x - 4 \ge 0$, so the domain is $[4, \infty)$.		26. We need $2x-6 > 0$, so the domain is $(3, \infty)$.
27. Solve $2 = f(5) = \frac{D}{5^2 - 16}$ for D: $2 = \frac{D}{9}$, so that $D = 18$.			
28. There are many such functions. The most natural one to construct has the form			
$f(x) = \frac{D}{(x+3)(x-2)}$. Since $(0, -4)$ is to lie on the graph of <i>f</i> , we substitute this point			
into the equation for the function to find the corresponding value of D that will ensure			
this: $-4 = \frac{D}{(0+3)(0-2)} = \frac{D}{-6}$, so that $D = 24$. Hence, one such function is given by:			
$f(x) = \frac{24}{(x+3)(x-2)}.$			
29. $h(-x) = (-x)^3 - 7(-x) = -(x^3 - 7x) \neq h(x)$ 30. $f(-x) = (-x)^4 + 3(-x)^2 - x^4 + 3x^2 - f(x)$			
$ \begin{array}{c} h(-x) = (-x)^{4} - 7(-x) = -(x^{2} - 7x) \neq h(x) \\ \text{So, not even.} \end{array} \qquad \qquad f(-x) = (-x)^{4} + 3(-x)^{2} = x^{4} + 3x^{2} = f(x^{2} - 7x) = 0 \\ \text{So, even.} \end{array} $		+ 3(-x) = x + 5x = J(x)	
$-h(-x) = -(-(x^3 - 7x)) = x^3 - 7x = h(x)$ Hence, cannot be odd.		t be odd.	
So, odd.			

31.		32.	
$f(-x) = \frac{1}{(-x)^3} + 3(-x) = -\left(\frac{1}{x^3} + 3x\right) \neq f(x)$		$f(-x) = \frac{1}{(-x)^2} + 3(-x)^4 + \left -x\right = f(x)$	
So, not eve	en.	So, even.	
$-f(-x) = -\left(-\frac{1}{2}\right)$	$-\left(\frac{1}{x^3}+3x\right) = \frac{1}{x^3}+3x = f(x)$	Hence, f cannot be odd.	
So, odd.			
33.			
Domain	$\left[-5,\infty ight)$		
Range	[−3,∞)	d) 2	
Increasing	$(-5,-3)\cup(3,\infty)$	e) 3	
Decreasing	(-1,1)	f) 1	
Constant	$(-3,1) \cup (1,3)$		
34.			
Domain	$(-\infty,\infty)$		
Range	$\left[-4,\infty ight)$	d) 0	
Increasing	$(-2,\infty)$	e) -3 f) 3	
Decreasing	(-∞, -2)	1) 5	
Constant	nowhere		
35.			
Domain	[-6,6]		
Range	$[0,3] \cup \{-3,-2,-1\}$		
Increasing	(0,3)	d) -1 e) -2	
Decreasing	(3,6)	f) 3	
Constant	$(-6, -4) \cup (-4, -2) \cup (-2, 0)$		

36.				
Domain	[-6,6]			
Range	[-3,1]			
Increasing	$(-3,1)\cup(2,3)\cup(4,5)$	d) 0		
Decreasing	$(-6, -3) \cup (1, 2) \cup$	e) -3 f) 1		
	$(3,4) \cup (5,6)$	-) -		
Constant	nowhere			
37.				
	$\int f(x) = \left[\left(x + h \right)^3 - 1 \right] - \left[x^3 \right]$	$[3-1]$ $x^3 + 2x^2h + 2xh^2 + h^3 + x^3 + 1$		
$\int (\lambda + n)$	$\frac{f(x)-f(x)}{h} = \frac{\lfloor (x-y) \rfloor \lfloor (x-y) \rfloor}{h}$	$\frac{x^{3}-1}{2} = \frac{x^{3}+3x^{2}h+3xh^{2}+h^{3}-1-x^{3}+1}{h}$		
	$h\left(3r^2+3rh+h^2\right)$	<i></i>		
	$=\frac{h\left(3x^2+3xh+h^2\right)}{h}$	$= \boxed{3x^2 + 3xh + h^2}$		
38.				
f(x+	$\frac{f(x+h) - f(x)}{h} = \frac{\frac{x+h-1}{x+h+2} - \frac{x-1}{x+2}}{h} = \frac{(x+h-1)(x+2) - (x-1)(x+h+2)}{h(x+h+2)(x+2)}$			
	$=\frac{\left(x^{2}+xh-x+2x+2h-2\right)-\left(x^{2}+hx+2x-x-h-2\right)}{h(x+h+2)(x+2)}$			
$= \frac{h(x+h+2)(x+2)}{h(x+2)}$				
3h 3				
$=\frac{3h}{h(x+h+2)(x+2)} = \left \frac{3}{(x+h+2)(x+2)}\right $				
39.				
	$\frac{f(x+h) - f(x)}{h} = \frac{\left(x+h + \frac{1}{x+h}\right) - \left(x+\frac{1}{x}\right)}{h} = \frac{h + \frac{1}{x+h} - \frac{1}{x}}{h}$			
	h h h			
	$=1 + \frac{x - (x + h)}{hx(x + h)} = \boxed{1 - \frac{1}{x(x + h)}}$			

61. $y = \sqrt{x-2} + 3$ <u>Domain</u> : $[2,\infty)$	62. $y = \sqrt{-x}$ <u>Domain</u> : $(-\infty, 0]$
63. $y = 5\sqrt{x} - 6$ <u>Domain</u> : $[0,\infty)$	64. $y = \frac{1}{2}\sqrt{x} + 3$ <u>Domain</u> : $[0,\infty)$
65. $y = (x^2 + 4x + 4) - 8 - 4 = (x + 2)^2 - 12$ Domain: \mathbb{R} or $(-\infty, \infty)$	66. $y = 2(x^{2} + 3x) - 5 = 2(x^{2} + 3x + \frac{9}{4}) - 5 - \frac{9}{2}$ $= 2(x + \frac{3}{2})^{2} - \frac{19}{2}$ Domain: \mathbb{R} or $(-\infty, \infty)$
67. $g(x) + h(x) = (-3x - 4) + (x - 3) = -2x - 7$ $g(x) - h(x) = (-3x - 4) - (x - 3) = -4x - 1$ $g(x) \cdot h(x) = (-3x - 4) \cdot (x - 3) = -3x^{2} + 5x + 12$ $\frac{g(x)}{h(x)} = \frac{-3x - 4}{x - 3}$ Domains: $dom(g + h)$ $dom(g - h)$ $dom(g h)$ $= (-\infty, \infty)$ $dom\left(\frac{g}{h}\right) = (-\infty, 3) \cup (3, \infty)$	$ \begin{array}{c} 68. \\ g(x) + h(x) = (2x+3) + (x^{2}+6) = x^{2} + 2x + 9 \\ g(x) - h(x) = (2x+3) - (x^{2}+6) = -x^{2} + 2x - 3 \\ g(x) \cdot h(x) = (2x+3) \cdot (x^{2}+6) \\ = 2x^{3} + 3x^{2} + 12x + 18 \\ \frac{g(x)}{h(x)} = \frac{2x+3}{x^{2}+6} \\ \underline{Domains:} \\ \begin{array}{c} dom(g+h) \\ dom(g-h) \\ dom(gh) \\ dom\left(\frac{g}{h}\right) \end{array} = (-\infty, \infty) $

69.	
$g(x) + h(x) = \frac{1}{x^2} + \sqrt{x}$	Domains:
$g(x) - h(x) = \frac{1}{x^2} - \sqrt{x}$	dom(g+h)
$g(x) \cdot h(x) = \frac{1}{x^2} \cdot \sqrt{x} = \frac{1}{\frac{3}{2}}$	dom(g-h)
x' x' 2	$dom(gh) = (0,\infty)$
$\frac{g(x)}{h(x)} = \frac{\frac{1}{x^2}}{\sqrt{x}} = \frac{1}{x^{\frac{5}{2}}}$	$dom\left(\frac{g}{h}\right)$
70.	x + 2 = 2x + 1 + (x + 2) + (2x + 1)
$g(x) + h(x) = \frac{x+3}{2(x-2)} + \frac{3x-1}{x-2}$	$g(x) \cdot h(x) = \frac{x+3}{2(x-2)} \cdot \frac{3x-1}{x-2} = \frac{(x+3) \cdot (3x-1)}{2(x-2)^2}$
$=\frac{(x+3)+2(3x-1)}{(2x-4)}$	$\frac{x+3}{2(x-2)}$
	$\frac{g(x)}{h(x)} = \frac{2(x-2)}{\frac{3x-1}{2}} = \frac{x+3}{2(x-2)} \cdot \frac{x-2}{3x-1} = \frac{x+3}{2(3x-1)}$
$=\frac{7x+1}{2(x-2)}$	$\frac{1}{x-2}$ $\frac{1}{x-2}$ $\frac{1}{x-2}$ $\frac{1}{x-2}$ $\frac{1}{x-2}$
	Domains:
$g(x) - h(x) = \frac{x+3}{2(x-2)} - \frac{3x-1}{x-2}$	$ \left. \begin{array}{c} dom(g+h) \\ dom(g-h) \end{array} \right\} = (-\infty, 2) \cup (2, \infty) $
$=\frac{(x+3)-2(3x-1)}{(2x-4)}$	$\frac{dom(g h)}{dom(gh)} = (0.5, 2) \circ (2, \infty)$
$-{(2x-4)}$	$I = \begin{pmatrix} f \\ f \end{pmatrix} = $
$=\frac{-5x+5}{2(x-2)}$	$dom\left(\frac{f}{g}\right) = \left(-\infty, \frac{1}{3}\right) \cup \left(\frac{1}{3}, 2\right) \cup \left(2, \infty\right)$
	Domains:
71.	Must have both $x-4 \ge 0$ and $2x+1 \ge 0$. So,
$g(x) + h(x) = \sqrt{x-4} + \sqrt{2x+1}$	
$g(x) - h(x) = \sqrt{x - 4} - \sqrt{2x + 1}$	$ \left. \begin{array}{c} dom(f+g) \\ dom(f-g) \\ dom(fg) \end{array} \right\} = \left[4, \infty \right). $
$g(x) \cdot h(x) = \sqrt{x-4} \cdot \sqrt{2x+1}$	
$\frac{g(x)}{h(x)} = \frac{\sqrt{x-4}}{\sqrt{2x+1}}$	For the quotient, must have both $x-4 \ge 0$ and $2x+1 > 0$. So,
$h(x) = \sqrt{2x+1}$	
	$dom\left(\frac{f}{g}\right) = [4,\infty).$
72.	
$g(x) + h(x) = (x^2 - 4) + (x + 2) = x^2 +$	1 (, 1)
$g(x) - h(x) = (x^2 - 4) - (x + 2) = x^2 - 4$	$ \begin{array}{c} x-6 \\ dom(g+h) \\ dom(g-h) \end{array} = (-\infty,\infty) $
$g(x) \cdot h(x) = \left(x^2 - 4\right) \cdot \left(x + 2\right)$	dom(gh)
$=x^{3}+2x^{2}-4x-8$	$dom\left(\frac{g}{h}\right) = (-\infty, -2) \cup (-2, \infty)$
$\frac{g(x)}{h(x)} = \frac{x^2 - 4}{x + 2} = x - 2, x \neq -2$	$\operatorname{aom}\left(\frac{1}{h}\right)^{-(-\infty,-2)\cup(-2,\infty)}$

73.

$$(f \circ g)(x) = 3(2x+1) - 4 = 6x - 1$$

$$(g \circ f)(x) = 2(3x-4) + 1 = 6x - 7$$
Domains:

$$dom(f \circ g) = (-\infty, \infty) = dom(g \circ f)$$
75.

$$(f \circ g)(x) = \frac{2}{\frac{1}{4-x} + 3} = \frac{2}{\frac{1+3(4-x)}{4-x}}$$

$$= \frac{2(4-x)}{13-3x} = \frac{8-2x}{13-3x}$$

$$(g \circ f)(x) = \frac{1}{4-\frac{2}{2x+3}} = \frac{8-2x}{4x+3} = \frac{4x+3}{4x+10}$$
76.

$$(f \circ g)(x) = \sqrt{2(\sqrt{x+6})^2 - 5} = \sqrt{2(x+6) - 5}$$

$$= \sqrt{2x+7}$$

$$(g \circ f)(x) = \sqrt{1-\frac{3}{2} + \frac{3}{2}} = \frac{4x+3}{4x+10}$$
76.

$$(f \circ g)(x) = \sqrt{2(\sqrt{x+6})^2 - 5} = \sqrt{2(x+6) - 5}$$

$$= \sqrt{2x+7}$$

$$(g \circ f)(x) = \sqrt{\sqrt{2x^2 - 5} + 6}$$
Domains:

$$dom(f \circ g) = (-\infty, 4) \cup (4, \frac{13}{3}) \cup (\frac{13}{3}, \infty)$$

$$dom(g \circ f) = (-\infty, -3) \cup (-3, -\frac{5}{2}) \cup (-\frac{5}{2}, \infty)$$
76.

$$(f \circ g)(x) = \sqrt{2(\sqrt{x+6})^2 - 5} = \sqrt{2(x+6) - 5}$$

$$= \sqrt{2x+7}$$

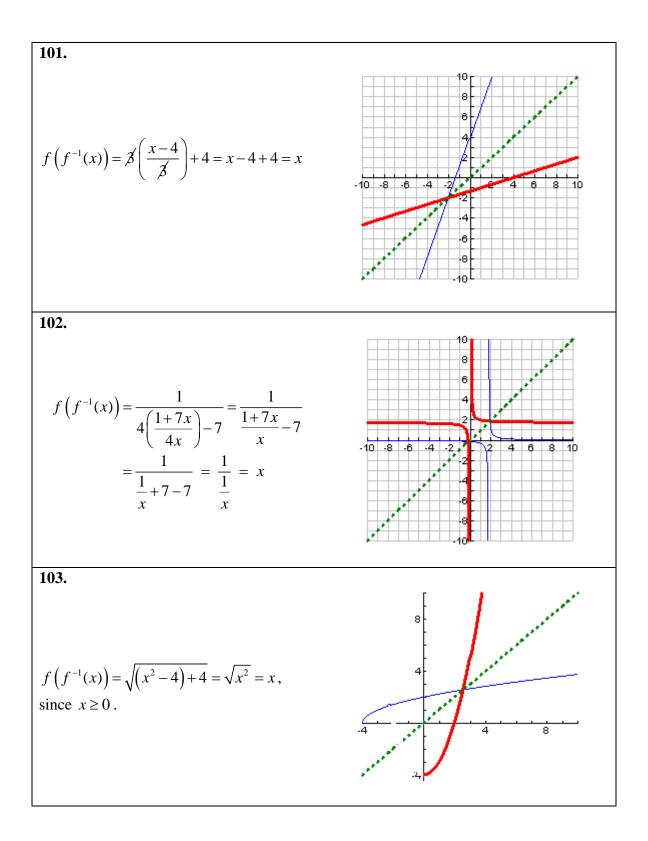
$$(g \circ f)(x) = \sqrt{\sqrt{2x^2 - 5} + 6}$$
Domains:

$$dom(g \circ f) : Note doth x + 6 \ge 0$$
 and

$$2x + 7 \ge 0$$
Thus, $dom(f \circ g) = [-\frac{7}{2}, \infty)$.

$$dom(g \circ f) : Note \sqrt{2x^2 - 5} + 6 \ge 0$$
, for
all values of x for which $\sqrt{2x^2 - 5}$ is
defined. This is true when $2x^2 - 5 \ge 0$.
So, solving this inequality yields:

$$2x^2 - 5 \ge 0$$

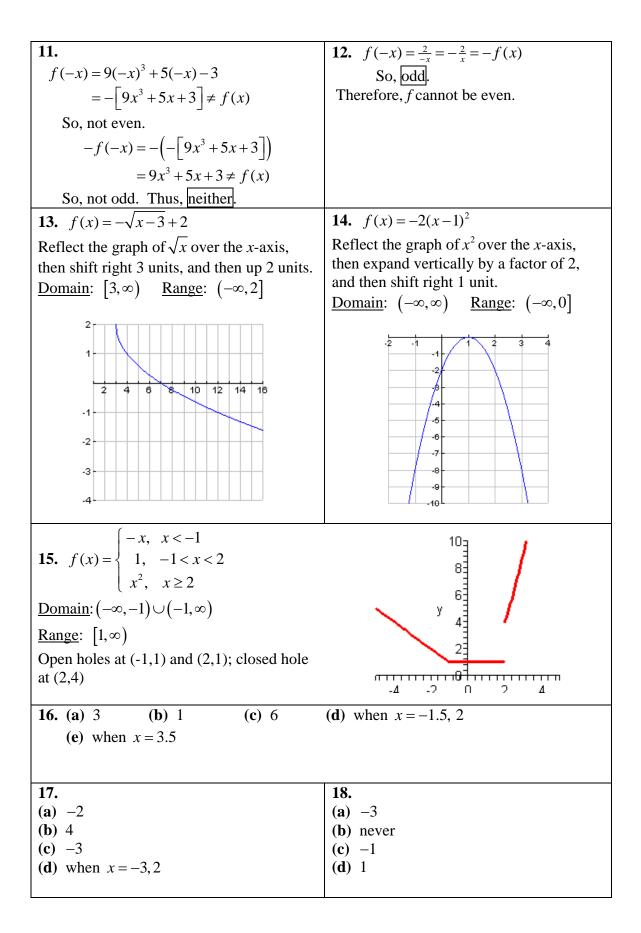

$$x^2 - \frac{5}{2} \ge 0$$

$$(x - \sqrt{\frac{5}{2}})(x + \sqrt{\frac{5}{2}}) \ge 0$$

$$CPs: \pm \sqrt{\frac{5}{2}} = \frac{+ - - + +}{-\sqrt{\frac{5}{2}}} \cup (\sqrt{\frac{5}{2}}, \infty)$$
.

	78.
77. $(f \circ g)(x) = \sqrt{x^2 - 4 - 5} = \sqrt{(x - 3)(x + 3)}$ $(g \circ f)(x) = (\sqrt{x - 5})^2 - 4 = x - 9$ <u>Domains:</u> $\underline{dom(f \circ g)}: \text{ Need } (x - 3)(x + 3) \ge 0.$ CPs: $\pm 3 \frac{+ + - + +}{-3 3}$ So, $dom(g \circ f) = (-\infty, -3] \cup [3, \infty).$ $\underline{dom(g \circ f)}: \text{ Need } x - 5 \ge 0. \text{ Thus,}$ $\underline{dom(g \circ f)} = [5, \infty).$	$(f \circ g)(x) = \frac{1}{\sqrt{\frac{1}{x^2 - 4}}} = \sqrt{x^2 - 4}$ $(g \circ f)(x) = \frac{1}{\left(\frac{1}{\sqrt{x}}\right)^2 - 4} = \frac{1}{\frac{1}{x} - 4}$ $= \frac{1}{\frac{1 - 4x}{x}} = \frac{x}{1 - 4x}$ $\frac{\text{Domains:}}{\frac{dom(f \circ g)}{x}}: \text{Need } (x - 2)(x + 2) > 0.$ $\text{CPs: } \pm 2 \stackrel{+}{\longrightarrow} \stackrel{-}{\longrightarrow} \stackrel{+}{\longrightarrow}$ So, $dom(f \circ g) = (-\infty, -2) \cup (2, \infty).$ $\underline{dom(g \circ f)}: \text{Need } 1 - 4x \neq 0, \text{ so that}$
	$x \neq \frac{1}{4}$. So, $dom(g \circ f) = (0, \frac{1}{4}) \cup (\frac{1}{4}, \infty)$.
79. $g(3) = 6(3) - 3 = 15$ $f(g(3)) = f(15) = 4(15)^{2} - 3(15) + 2 = 857$ $f(-1) = 4(-1)^{2} - 3(-1) + 2 = 9$ $g(f(-1)) = g(9) = 6(9) - 3 = 51$ 81. $g(3) = 5(3) + 2 = 17$ $f(g(3)) = f(17) = \frac{17}{ 2(17) - 3 } = \frac{17}{31}$ $f(-1) = \frac{-1}{ 2(-1) - 3 } = -\frac{1}{5}$ $g(f(-1)) = g\left(-\frac{1}{5}\right) = \left 5\left(-\frac{1}{5}\right) + 2\right = 1$	80. $g(3) = 3^{2} + 5 = 14, \text{ but } f(g(3)) = f(14)$ is not defined. $f(-1) = \sqrt{4 - (-1)} = \sqrt{5}$ $g(f(-1)) = g(\sqrt{5}) = (\sqrt{5})^{2} + 5 = 10$ 82. $g(3) = 3^{2} - 1 = 8$ $f(g(3)) = f(8) = \frac{1}{8 - 1} = \frac{1}{7}$ $f(-1) = \frac{1}{-1 - 1} = -\frac{1}{2}$ $g(f(-1)) = g(-\frac{1}{2}) = (-\frac{1}{2})^{2} - 1 = -\frac{3}{4}$
$\frac{g(f(-1)) - g(-\frac{1}{5}) - \left 5(-\frac{1}{5}) + 2 \right - 1}{2}$	
83. $f(g(3)) = \left(\sqrt[3]{3-4}\right)^2 - \left(\sqrt[3]{3-4}\right) + 10$ $= (-1)^2 - (-1) + 10 = \boxed{12}$ $g(f(-1)) = g((-1)^2 + 1 + 10)$ $= \sqrt[3]{12-4} = \boxed{2}$	84. $f(g(3))$ is <u>undefined</u> since $g(3)$ is not defined. $g(f(-1)) = g\left(\frac{4}{(-1)^2 - 2}\right) = g(-4) = \boxed{\frac{1}{7}}$
85. Let $f(x) = 3x^2 + 4x + 7$, $g(x) = x - 2$. Then, $h(x) = f(g(x))$.	86. Let $f(x) = \frac{x}{1-x}$, $g(x) = \sqrt[3]{x}$. Then, $h(x) = f(g(x))$.

87. Let $f(x) = \frac{1}{\sqrt{x}}$, $g(x) = x^2 + 7$. Then, $h(x) = f(g(x))$. 89. The area of a circle with radius $r(t)$ is given by: $A(t) = \pi (r(t))^2 = \pi (25\sqrt{t+2})^2$ $= 625\pi (t+2) \text{ in}^2$	88. Let $f(x) = \sqrt{x}$, $g(x) = 3x+4 $. Then, $h(x) = f(g(x))$. 90. Since $42 = lw$, $l = \frac{42}{w}$. So, the perimeter formula becomes: $36 = 2l + 2w = 2(\frac{42}{w}) + 2w = \frac{84 + 2w^2}{w}$ so that
	$2w^{2} - 36w + 84 = 0$ $w^{2} - 18w + 42 = 0$
91. Yes	92. Yes
93. Yes	94. No, since both $(1,1)$ and $(-1,1)$ satisfy the equation.
95. One-to-one	96. Not one-to-one, since $f(-1) = f(1) = 1$, for instance.
97. Not one-to-one. No function that is a constant value on an entire value can be one-to-one.	98. Not one-to-one. For instance, $f(4) = f(-1) = 0$.
99. One-to-one	100. One-to-one


104.

$$f(f^{-1}(x)) = \frac{7x+2}{\frac{x-1}{x-1}-7} = \frac{7x+2+2(x-1)}{\frac{x-1}{7x+2-7(x-1)}}$$

$$= \frac{7x+2+2x-2}{\frac{x}{x-1}-7} = \frac{9x}{9} = x$$
105. Solve $y = 2x+1$ for x :
 $x = \frac{1}{2}(y-1)$
Thus, $f^{-1}(x) = \frac{1}{2}(x-1) = \frac{x-1}{2}$.
106. Solve $y = x+2$ for x :
 $x = \sqrt[3]{y-2}$
 $dom(f) = rng(f^{-1}) = (-\infty, \infty)$
Thus, $f^{-1}(x) = \frac{1}{2}(x-1) = \frac{x-1}{2}$.
107. Solve $y = \sqrt{x+4}$ for x :
 $x = \sqrt[3]{y-2}$
 $dom(f) = rng(f^{-1}) = (-\infty, \infty)$
108. Solve $y = (x+4)^2 + 3$ for x :
 $\sqrt{y-3} = x+4$
 $-4 + \sqrt{y-3} = x$
 $\sqrt{y-3} = x+4$
 $-4 + \sqrt{y-3} = x$
 $dom(f) = rng(f^{-1}) = [-4, \infty)$
Thus, $f^{-1}(x) = -\frac{x}{2} + 3$
 $dom(f) = rng(f^{-1}) = [-4, \infty)$
108. Solve $y = (x+4)^2 + 3$ for x :
 $\sqrt{y-3} = x+4$
 $-4 + \sqrt{y-3} = x$
 $rng(f) = dom(f^{-1}) = [-4, \infty)$
Thus, $f^{-1}(x) = -4 + \sqrt{x-3}$.
109. Solve $y = \frac{x+6}{xy+3y} = x+6$
 $xy - x = 6-3y$
 $x(y-1) = 6-3y$
 $x(y-1) = 6-3y$
 $x = \frac{6-3y}{x-1}$
Thus, $f^{-1}(x) = \frac{6-3y}{x-1}$.
Thus, $f^{-1}(x) = \frac{6-3y}{x-1}$
 $rng(f) = dom(f^{-1}) = (-\infty, -3) \cup (-3, \infty)$

110. Solve $y = 2\sqrt[3]{x-5} - 8$ for x: $y+8=2\sqrt[3]{x-5}$ <u>Domains</u>: $(\frac{1}{2}(y+8))^3 = x-5$ $dom(f) = rng(f^{-1}) = (-\infty, \infty)$ $5+(\frac{1}{2}(y+8))^3 = x$ $rng(f) = dom(f^{-1}) = (-\infty, \infty)$ Thus, $f^{-1}(x) = 5+(\frac{1}{2}(x+8))^3$. **111.** Let x = total dollars worth of products sold. Then, S(x) = 22,000+0.08x. Solving y = 22,000+0.08x for x yields: $x = \frac{1}{0.08}(y-22,000)$ Thus, $S^{-1}(x) = \frac{x-22,000}{0.08}$. This inverse function tells you the sales required to earn a desired income. **112.** $V(s) = 3s^2$, $s \ge 0$. Solving $y = 3s^2$ for s yields: $s = \sqrt{\frac{1}{3}y}$. So, $V^{-1}(s) = \sqrt{\frac{1}{3}s}$. This inverse function tells you the length s of a side of a base required to get a desired volume.

Chapter 1 Practice Test Solutions	
1. b (Not one-to-one since both $(0,3)$ and $(-3,3)$ lie on the graph.)	2. a (Doesn't pass the vertical line test.)
3. c	4. Observe that
	$f(11) = \sqrt{11 - 2} = \sqrt{9} = 3$
	$g(-1) = (-1)^2 + 11 = 12$
	So, $f(11) - 2g(-1) = 3 - 2(12) = -21$.
5. $\left(\frac{f}{g}\right)(x) = \frac{\sqrt{x-2}}{x^2+11}$ Domain: $[2,\infty)$	6. $\left(\frac{g}{f}\right)(x) = \frac{x^2 + 11}{\sqrt{x-2}}$ <u>Domain</u> : $(2,\infty)$
7.	8.
$g(f(x)) = (\sqrt{x-2})^2 + 11 = x - 2 + 11 = x + 9$	(f+g)(6) = f(6) + g(6)
Domain: $[2,\infty)$	$=\sqrt{6-2} + (6^{2} + 11) = 2 + 47 = 49$
9.	10. $f(-x) = -x - (-x)^2 = x - x^2 = f(x)$
$f\left(g\left(\sqrt{7}\right)\right) = f\left(\left(\sqrt{7}\right)^2 + 11\right) = f(18)$	So, even. Therefore, f cannot be odd.
$=\sqrt{18-2}=\boxed{4}$	

$$\frac{19.}{\left(\frac{3(x+h)^2 - 4(x+h) + 1\right) - \left(3x^2 - 4x + 1\right)}{h}}{=} \frac{3x^2 + 6xh + 3h^2 - 4x - 4h + 1 - 3x^2 + 4x - 1}{h}}{=} \frac{h(6x + 3h - 4)}{h} = \boxed{6x + 3h - 4}$$

$$\frac{10.}{1000}$$

$$\frac{f(x+h) - f(x)}{h} = \frac{\left[\left(x+h\right)^3 - \frac{1}{\sqrt{x+h}}\right] - \left[x^3 - \frac{1}{\sqrt{x}}\right]}{h}$$

$$= \frac{x^3 + 3x^2h + 3xh^2 + h^3 - x^3}{h} - \frac{\sqrt{x+h}}{-\sqrt{x}\sqrt{x+h}}$$

$$= \frac{h(3x^2 + 3xh + h^2)}{h} - \frac{\sqrt{x} - \sqrt{x+h}}{h\sqrt{x}\sqrt{x+h}} \cdot \frac{\sqrt{x} + \sqrt{x+h}}{\sqrt{x}\sqrt{x+h}}$$

$$= \left(3x^2 + 3xh + h^2\right) - \frac{\sqrt{x} - \sqrt{x+h}}{h\sqrt{x}\sqrt{x+h}} \cdot \frac{\sqrt{x} + \sqrt{x+h}}{\sqrt{x}\sqrt{x+h}}$$

$$= \left(3x^2 + 3xh + h^2\right) - \frac{\sqrt{x} - \sqrt{x+h}}{h\sqrt{x}\sqrt{x+h}(\sqrt{x} + \sqrt{x+h})}$$

$$= \left[\left(3x^2 + 3xh + h^2\right) + \frac{1}{\sqrt{x}\sqrt{x+h}(\sqrt{x} + \sqrt{x+h})}\right]$$
21.

$$\left(\frac{(64 - 16(2)^2) - (64 - 16(0)^2)}{2} = \frac{0 - 64}{2} = \boxed{-32}\right]$$
22.

$$\frac{\sqrt{10 - 1} - \sqrt{2 - 1}}{10 - 2} = \frac{3 - 1}{8} = \boxed{\frac{1}{4}}$$
23. Solve $y = \sqrt{x - 5}$ for x:
 $y^2 = x - 5$
 $y^2 + 5 = x$ $rng(f) = dom(f^{-1}) = [5, \infty)$
 $y^2 + 5 = x$, $rng(f) = dom(f^{-1}) = [0, \infty)$
Thus, $f^{-1}(x) = x^2 + 5$.
24. Solve $y = x^2 + 5$ for x:
 $y = x^2 + 5$
 $\sqrt{y - 5} = x$, since $x \ge 0$. $rng(f) = dom(f^{-1}) = [0, \infty)$
Thus, $f^{-1}(x) = \sqrt{x - 5}$.

25. Solve
$$y = \frac{2x+1}{5-x}$$
 for x:
 $(5-x)y = 2x+1$
 $5y - xy = 2x+1$
 $5y - 1 = x(y+2)$
 $x = \frac{5y-1}{y+2}$
Thus, $f^{-1}(x) = \frac{5x-1}{y+2}$.
26. We compute the inverse of f piecewise:
For $x \le 0$: Solve $y = -x$ for x: $x = -y$. So, $f^{-1}(x) = -x$ on $(-\infty, 0]$.
For $x > 0$: Solve $y = -x$ for x: $x = -y$. So, $f^{-1}(x) = -\sqrt{-x}$ on $(0, \infty)$.
Thus, the inverse function is given by
 $f^{-1}(x) = \begin{cases} -x, & x \ge 0\\ -\sqrt{-x}, & x < 0 \end{cases}$
27. Can restrict to $[0, \infty)$ so that f will have an inverse. Also, one could restrict to any interval of the form $[a, \infty)$ or $(-\infty, -a]$, where a is a positive real number, to ensure f is one-to-one.
28. The point $(5, -2)$ (switch x and y coordinates to get a point on the inverse.)
29. $\frac{\Delta P}{\Delta d} = \frac{28 - 10}{100 - 0} = 0.18 \frac{p_{M}}{2}$. $\frac{\Delta d}{\Delta t} = \frac{5}{1} = 5 \frac{p_{Mex}}{2}$.
So, $\frac{\Delta P}{\Delta t} = \frac{\Delta P}{\Delta d} \cdot \frac{\Delta d}{\Delta t} = (0.18)(5)^{p_{Mex}} = 0.9 \frac{p_{Mex}}{2}$. is the slope of the line.
Using (0, 10) as a point on the line, we see that the equation is $P(t) = \frac{9}{10}t + 10$.
30. Recall that $V = \frac{4}{3}\pi R^3$ (1) and $S = 4\pi R^2$ (2)
Solve (2) for R: $R = \sqrt{\frac{S}{4\pi}}$ Then, substitute this into (1):
 $V = \frac{4}{3}\pi \left(\sqrt{\frac{S}{4\pi}}\right)^3 = \frac{S}{3}\sqrt{\frac{S}{4\pi}} = \frac{S}{6}\sqrt{\frac{S}{\pi}}$
31. Consider $f(x) = -\sqrt{1-x^2}$, $-1 \le x \le 0$. (The graph of f is the quarter unit circle in the third quadrant.) To find its inverse, solve $y = -\sqrt{1-x^2}$ for x:
 $y = -\sqrt{1-x^2} \Rightarrow (-y)^2 = 1-x^2 \Rightarrow x^2 = 1-y^2 \Rightarrow x = -\sqrt{1-y^2}$ since $-1 \le x \le 0$
So, $f^{-1}(x) = -\sqrt{1-x^2}$ (The graph looks identical to that of f.)

32. Solve r(t) = 15 (At this point, the **33.** Let x = number of minutes. Then, puddle just touches the sidelines.) $10\sqrt{t} = 15$ 15, $0 \le x \le 30$ $C(x) = \begin{cases} 15 + 1(x-30) & , x > 30 \end{cases}$ $\sqrt{t} = 1.5$ Amount for minutes beyond the initial 30. $t = (1.5)^2 = 2.25$ 15, $0 \le x \le 30$ So, after 2.25 hours, the puddle will reach x - 15, x > 30the sidelines. **34.** slope = $\frac{\Delta T}{\Delta CO_2} = \frac{46.23 - 45.86}{379.7 - 369.4} = \frac{0.37}{10.3} \approx 0.036$ Using the point (369.4, 45.86), we find that the equation of the line is T(x) = 0.036(x - 369.4) + 45.86. As such, $T(375) = 0.036(375 - 369.4) + 45.86 = 46.1^{\circ} F$.