Complete Solutions Manual # Precalculus Functions and Graphs THIRTEENTH EDITION Earl W. Swokowski **Jeffery A. Cole** Prepared by **Jeffery A. Cole** © 2019 Cengage Learning WCN: 01-100-101 ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher. For product information and technology assistance, contact us at Cengage Learning Customer & Sales Support, 1-800-354-9706. For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions Further permissions questions can be emailed to permissionrequest@cengage.com. ISBN: 978-1-337-55235-6 Cengage Learning 20 Channel Center Street Boston, MA 02210 Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at: www.cengage.com/global. Cengage Learning products are represented in Canada by Nelson Education, Ltd. To learn more about Cengage Learning Solutions, visit www.cengage.com. Purchase any of our products at your local college store or at our preferred online store **www.cengagebrain.com**. #### **Preface** This manual contains solutions/answers to all exercises in the text *Precalculus: Functions and Graphs, Thirteenth Edition*, by Earl W. Swokowski and Jeffery A. Cole. A *Student's Solutions Manual* is also available; it contains solutions for the odd-numbered exercises in each section and for the Discussion Exercises, as well as solutions for all the exercises in the Review Sections and for the Chapter Tests. For most problems, a reasonably detailed solution is included. It is my hope that by merely browsing through the solutions, professors will save time in determining appropriate assignments for their particular class. I appreciate feedback concerning errors, solution correctness or style, and manual style—comments from professors using previous editions have greatly strengthened the ancillary package as well as the text. Any comments may be sent directly to me at jeff-cole@comcast.net. I would like to thank: Marv Riedesel and Mary Johnson for accuracy checking of the new exercises; Andrew Bulman-Fleming, for manuscript preparation; Brian Morris and the late George Morris, of Scientific Illustrators, for creating the mathematically precise art package; and Laura Gallus, of Cengage Learning, for checking the manuscript. I dedicate this manual to Carly, Eli, and Mason, my grandchildren. Jeffery A. Cole ## **Table of Contents** | 1 | Topic | s from Algebra | | |---|-------|---|-----| | | 1.1 | Real Numbers • | 1 | | | 1.2 | Exponents and Radicals • | 5 | | | 1.3 | Algebraic Expressions • | 10 | | | 1.4 | Equations • | 19 | | | 1.5 | Complex Numbers • | 30 | | | 1.6 | Inequalities • | 34 | | | | Chapter 1 Review Exercises • | 42 | | | | Chapter 1 Discussion Exercises • | 48 | | | | Chapter 1 Test • | 51 | | 2 | Funct | tions and Graphs | 55 | | | 2.1 | Rectangular Coordinate Systems • | 55 | | | 2.2 | Graphs of Equations • | 60 | | | 2.3 | Lines • | 73 | | | 2.4 | Definition of Function • | 82 | | | 2.5 | Graphs of Functions • | 93 | | | 2.6 | Quadratic Functions • | 109 | | | 2.7 | Operations on Functions • | 118 | | | | Chapter 2 Review Exercises • | 130 | | | | Chapter 2 Discussion Exercises • | 143 | | | | Chapter 2 Test • | 146 | | 3 | Polyn | omial and Rational Functions | 149 | | | 3.1 | Polynomial Functions of Degree Greater Than 2 • | 149 | | | ?3.2 | Properties of Division • | 162 | | | 3.3 | Zeros of Polynomials • | 168 | | | 3.4 | Complex and Rational Zeros of Polynomials • | 175 | | | 3.5 | Rational Functions • | 183 | | | 3.6 | Variation • | 200 | | | | Chapter 3 Review Exercises • | 204 | | | | Chapter 3 Discussion Exercises • | 210 | | | | Chapter 3 Test • | 213 | | 4 | Inver | se, Exponential, and Logarithmic Functions | 215 | | | 4.1 | Inverse Functions • | 215 | | | 4.2 | Exponential Functions • | | | | 4.3 | The Natural Exponential Function • | | | | 4.4 | Logarithmic Functions • | | | | 4.5 | Properties of Logarithms • | | | | 4.6 | Exponential and Logarithmic Equations • | | | | | Chapter 4 Review Exercises • | | | | | Chapter 4 Discussion Exercises • | | | | | Chanter 4 Test • | 282 | | 5 | The T | rigonometric Functions | 285 | | | | | | | | |---|-----------------------|--|-----|--|--|--|--|--|--|--| | | 5.1 | Angles • | | | | | | | | | | | 5.2 | Trigonometric Functions of Angles • | 289 | | | | | | | | | | 5.3 | Trigonometric Functions of Real Numbers • | | | | | | | | | | | 5.4 | Values of the Trigonometric Functions • | | | | | | | | | | | 5.5 | Trigonometric Graphs • | 312 | | | | | | | | | | 5.6 | Additional Trigonometric Graphs • | 329 | | | | | | | | | | 5.7 | Applied Problems • | | | | | | | | | | | | Chapter 5 Review Exercises • | 348 | | | | | | | | | | | Chapter 5 Discussion Exercises • | 358 | | | | | | | | | | | Chapter 5 Test • | 360 | | | | | | | | | 6 | Analytic Trigonometry | | | | | | | | | | | • | 6.1 | Verifying Trigonometric Identities • | | | | | | | | | | | 6.2 | Trigonometric Equations • | | | | | | | | | | | 6.3 | The Addition and Subtraction Formulas • | | | | | | | | | | | 6.4 | Multiple-Angle Formulas • | | | | | | | | | | | 6.5 | Product-to-Sum and Sum-to-Product Formulas • | | | | | | | | | | | 6.6 | The Inverse Trigonometric Functions • | | | | | | | | | | | | Chapter 6 Review Exercises • | | | | | | | | | | | | Chapter 6 Discussion Exercises • | | | | | | | | | | | | Chapter 6 Test • | | | | | | | | | | 7 | Annli | cations of Trigonometry | 421 | | | | | | | | | , | 7.1 | The Law of Sines • | | | | | | | | | | | 7.2 | The Law of Cosines • | | | | | | | | | | | 7.3 | Vectors • | | | | | | | | | | | 7.4 | The Dot Product • | | | | | | | | | | | 7.5 | Trigonometric Form for Complex Numbers • | | | | | | | | | | | 7.6 | De Moivre's Theorem and <i>n</i> th Roots of Complex Numbers • | | | | | | | | | | | | Chapter 7 Review Exercises • | | | | | | | | | | | | Chapter 7 Discussion Exercises • | | | | | | | | | | | | Chapter 7 Test • | | | | | | | | | | 8 | Syster | ns of Equations and Inequalities | 461 | | | | | | | | | Ü | • | Systems of Equations • | | | | | | | | | | | 8.2 | Systems of Linear Equations in Two Variables • | | | | | | | | | | | 8.3 | Systems of Inequalities • | | | | | | | | | | | 8.4 | Linear Programming • | | | | | | | | | | | 8.5 | Systems of Linear Equations in More Than Two Variables • | | | | | | | | | | | 8.6 | The Algebra of Matrices • | | | | | | | | | | | 8.7 | The Inverse of a Matrix • | | | | | | | | | | | 8.8 | Determinants • | | | | | | | | | | | 8.9 | Properties of Determinants • | | | | | | | | | | | 8.10 | Partial Fractions • | | | | | | | | | | | 0.10 | Chapter 8 Review Exercises • | | | | | | | | | | | | Chapter 8 Discussion Exercises • | | | | | | | | | | | | Chapter 8 Test • | | | | | | | | | | 9 | Sequences, Series, and Probability | | | | | | | |----|------------------------------------|---|-----|--|--|--|--| | | 9.1 | Infinite Sequences and Summation Notation • | 547 | | | | | | | 9.2 | Arithmetic Sequences • | 556 | | | | | | | 9.3 | Geometric Sequences • | 562 | | | | | | | 9.4 | Mathematical Induction • | 568 | | | | | | | 9.5 | The Binomial Theorem • | 577 | | | | | | | 9.6 | Permutations • | 582 | | | | | | | 9.7 | Distinguishable Permutations and Combinations • | 586 | | | | | | | 9.8 | Probability • | 590 | | | | | | | | Chapter 9 Review Exercises • | 598 | | | | | | | | Chapter 9 Discussion Exercises • | 605 | | | | | | | | Chapter 9 Test • | 609 | | | | | | 10 | Topic | s from Analytic Geometry | 613 | | | | | | | 10.1 | Parabolas • | 613 | | | | | | | 10.2 | Ellipses • | 620 | | | | | | | 10.3 | Hyperbolas • | 630 | | | | | | | 10.4 | Plane Curves and Parametric Equations • | 641 | | | | | | | 10.5 | Polar Coordinates • | 655 | | | | | | | 10.6 | Polar Equations of Conics • | 673 | | | | | | | | Chapter 10 Review Exercises • | 679 | | | | | | | | Chapter 10 Discussion Exercises • | 689 | | | | | | | | Chapter 10 Test • | 691 | | | | | | 11 | Limits | s of Functions | 695 | | | | | | | 11.1 | Introduction to Limits • | 695 | | | | | | | 11.2 | Definition of Limit • | 703 | | | | | | | 11.3 | Techniques for Finding Limits • | 711 | | | | | | | 11.4 | Limits Involving Infinity • | 718 | | | | | | | | Chapter 11 Review Exercises • | 726 | | | | | | | | Chapter 11 Discussion Exercises • | | | | | | | | | Chapter 11 Test • | 732 | | | | | ### To the Instructor In the chapter review sections, the solutions are abbreviated since more detailed solutions were given in chapter sections. In easier groups of exercises, representative solutions are shown. When appropriate, only the answer is listed. All figures have been plotted using computer software, offering a high degree of precision. The calculator graphs are from various TI screens. When possible, we tried to make each piece of art with the same scale to show a realistic and consistent graph. This manual was prepared using \mathbb{EXP} : *The Scientific Word Processor*. The following notations are used in the manual. *Note:* Notes to the instructor/student pertaining to hints on instruction or conventions to follow. ``` { } { comments to the reader are in braces } LS { Left Side of an equation } { Right Side of an equation } RS { implies, next equation, logically follows } \Rightarrow { if and only if, is equivalent to }
\Leftrightarrow { bullet, used to separate problem statement from solution or explanation } { used to identify the answer to the problem } { section references } { Example: \forall x \text{ means "for all } x"} \{ The set of all real numbers except a. \} \mathbb{R}-\{a\} { therefore } QI-QIV { quadrants I, II, III, IV } ``` #### **Chapter 1: Fundamental Concepts of Algebra** #### 1.1 Exercises (a) Since x and y have opposite signs, the product xy is negative. **(b)** Since $$x^2 > 0$$ and $y > 0$, the product x^2y is positive. (c) Since x < 0 $\{x \text{ is negative}\}\$ and y > 0 $\{y \text{ is positive}\}\$, the quotient $\frac{x}{y}$ is negative. Thus, $\frac{x}{y} + x$ is the sum of two negatives, which is negative. (d) Since y > 0 and x < 0, y - x > 0. **2** (a) Since x and y have opposite signs, the quotient $\frac{x}{y}$ is negative. **(b)** Since x < 0 and $y^2 > 0$, the product xy^2 is negative. (c) Since $$x - y < 0$$ and $xy < 0$, $\frac{x - y}{xy} > 0$. (d) Since y > 0 and y - x > 0, y(y - x) > 0. **3** (a) Since -7 is to the left of -4 on a coordinate line, -7 < -4. **(b)** Using a calculator, we see that $\frac{\pi}{2} \approx 1.57$. Hence, $\frac{\pi}{2} > 1.5$. (c) $$\sqrt{225} = 15$$ *Note:* $\sqrt{225} \neq \pm 15$ **4** (a) Since -3 is to the right of -6 on a coordinate line, -3 > -6. **(b)** Using a calculator, we see that $\frac{\pi}{4} \approx 0.79$. Hence, $\frac{\pi}{4} < 0.8$. (c) $$\sqrt{289} = 17$$ *Note:* $\sqrt{289} \neq \pm 17$ **5** (a) Since $\frac{1}{11} = 0.\overline{09} = 0.0909..., \frac{1}{11} > 0.09$. (b) Since $\frac{2}{3} = 0.\overline{6} = 0.6666..., \frac{2}{3} > 0.666$. (c) Since $\frac{22}{7} = 3.\overline{142857}$ and $\pi \approx 3.141593$, $\frac{22}{7} > \pi$. **6** (a) Since $\frac{1}{7} = 0.\overline{142857}, \frac{1}{7} < 0.143.$ **(b)** Since $\frac{5}{6} = 0.8\overline{3} = 0.8333..., \frac{5}{6} > 0.833.$ (c) Since $\sqrt{2} \approx 1.414, \sqrt{2} > 1.4$. **[7]** (a) "x is negative" is equivalent to x < 0. We symbolize this by writing "x is negative" $\Leftrightarrow x < 0$." **(b)** y is nonnegative $\Leftrightarrow y \ge 0$ (c) q is less than or equal to $\pi \Leftrightarrow q \leq \pi$ (d) d is between 4 and 2 \Leftrightarrow 2 < d < 4 (e) t is not less than $5 \Leftrightarrow t \ge 5$ (f) The negative of z is not greater than $3 \Leftrightarrow -z \leq 3$ (g) The quotient of p and q is at most $7 \Leftrightarrow \frac{p}{q} \leq 7$ (h) The reciprocal of w is at least $9 \Leftrightarrow \frac{1}{w}$ (i) The absolute value of x is greater than $7 \Leftrightarrow |x| > 7$ **Note:** An informal definition of absolute value that may be helpful is $$|something| = \begin{cases} itself & \text{if } itself \text{ is positive or zero} \\ -(itself) & \text{if } itself \text{ is negative} \end{cases}$$ **8** (a) b is positive $$\Leftrightarrow b > 0$$ **(b)** s is nonpositive $\Leftrightarrow s \leq 0$ (c) w is greater than or equal to $$-4 \Leftrightarrow w \geq -4$$ (d) c is between $$\frac{1}{5}$$ and $\frac{1}{3} \Leftrightarrow \frac{1}{5} < c < \frac{1}{3}$ (e) p is not greater than $-2 \Leftrightarrow p \leq -2$ (f) The negative of $$m$$ is not less than $-2 \Leftrightarrow -m \ge -2$ (g) The quotient of r and s is at least $$\frac{1}{5} \Leftrightarrow \frac{r}{s} = \frac{1}{5}$$ **(h)** The reciprocal of f is at most $14 \Leftrightarrow \frac{1}{f} \leq 14$ (i) The absolute value of x is less than $$4 \Leftrightarrow |x| < 4$$ **9** (a) $$|-3-4| = |-7| = -(-7)$$ {since $-7 < 0$ } = 7 **(b)** $$|-5| - |2| = -(-5) - 2 = 5 - 2 = 3$$ (c) $$|7| + |-4| = 7 + [-(-4)] = 7 + 4 = 11$$ **10** (a) $$|-11+1| = |-10| = -(-10) \{ \text{ since } -10 < 0 \} = 10$$ **(b)** $$|6| - |-3| = 6 - [-(-3)] = 6 - 3 = 3$$ (c) $$|8| + |-9| = 8 + [-(-9)] = 8 + 9 = 17$$ **11** (a) $$(-5)|3-6| = (-5)|-3| = (-5)[-(-3)] = (-5)(3) = -15$$ **(b)** $$|-6|/(-2) = -(-6)/(-2) = 6/(-2) = -3$$ **(c)** $|-7| + |4| = -(-7) + 4 = 7 + 4 = 11$ (c) $$|-7| + |4| = -(-7) + 4 = 7 + 4 = 11$$ **12** (a) $$(4)|6-7|=(4)|-1|=(4)[-(-1)]=(4)(1)=4$$ **(b)** $$5/|-2| = 5/[-(-2)] = 5/2$$ (c) $$|-1| + |-9| = -(-1) + [-(-9)] = 1 + 9 = 10$$ **13** (a) Since $$(4 - \pi)$$ is positive, $|4 - \pi| = 4 - \pi$. **(b)** Since $$(\pi - 4)$$ is negative, $|\pi - 4| = -(\pi - 4) = 4 - \pi$. (c) Since $$(\sqrt{2} - 1.5)$$ is negative, $|\sqrt{2} - 1.5| = -(\sqrt{2} - 1.5) = 1.5 - \sqrt{2}$. **14** (a) Since $$(\sqrt{3} - 1.7)$$ is positive, $|\sqrt{3} - 1.7| = \sqrt{3} - 1.7$. **(b)** Since $$(1.7 - \sqrt{3})$$ is negative, $|1.7 - \sqrt{3}| = -(1.7 - \sqrt{3}) = \sqrt{3} - 1.7$. (c) $$\left| \frac{1}{5} - \frac{1}{3} \right| = \left| \frac{3}{15} - \frac{5}{15} \right| = \left| -\frac{2}{15} \right| = -\left(-\frac{2}{15} \right) = \frac{2}{15}$$ **15** (a) $$d(A,B) = |7-3| = |4| = 4$$ **(b)** $$d(B,C) = |-5-7| = |-12| = 12$$ (c) $$d(C,B) = d(B,C) = 12$$ **(d)** $$d(A,C) = |-5-3| = |-8| = 8$$ **16** (a) $$d(A,B) = |-2 - (-6)| = |4| = 4$$ **(b)** $$d(B,C) = |4 - (-2)| = |6| = 6$$ (c) $$d(C,B) = d(B,C) = 6$$ (d) $$d(A,C) = |4 - (-6)| = |10| = 10$$ **17** (a) $$d(A, B) = |1 - (-9)| = |10| = 10$$ **(b)** $$d(B,C) = |10-1| = |9| = 9$$ (c) $$d(C,B) = d(B,C) = 9$$ (d) $$d(A,C) = |10 - (-9)| = |19| = 19$$ **18** (a) $$d(A,B) = |-4-8| = |-12| = 12$$ **(b)** $$d(B,C) = |-1 - (-4)| = |3| = 3$$ (c) $$d(C,B) = d(B,C) = 3$$ (d) $$d(A,C) = |-1-8| = |-9| = 9$$ **Note:** Because |a| = |-a|, the answers to Exercises 19–24 could have a different form. For example, $|-3 - x| \ge 8$ is equivalent to $|x+3| \ge 8$. **19** $$A = x$$ and $B = 7$, so $d(A, B) = |7 - x|$. Thus, " $d(A, B)$ is less than 2" can be written as $|7 - x| < 2$. **20** $$d(A,B) = \left| -\sqrt{2} - x \right| \Rightarrow \left| -\sqrt{2} - x \right| > 1$$ **21** $$d(A,B) = |-3-x| \Rightarrow |-3-x| \ge 8$$ **22** $$d(A,B) = |4-x| \Rightarrow |4-x| \le 5$$ **23** $$d(A,B) = |x-4| \Rightarrow |x-4| \le 3$$ **24** $$d(A,B) = |x - (-2)| = |x + 2| \implies |x + 2| \ge 4$$ **Note:** In Exercises 25–32, you may want to substitute a permissible value for the variable to first test if the expression inside the absolute value symbol is positive or negative. **25** Pick an arbitrary value for x that is less than -3, say -5. Since 3 + (-5) = -2 is negative, we conclude that if x < -3, then 3 + x is negative. Hence, $$|3 + x| = -(3 + x) = -x - 3$$. **26** If $$x > 5$$, then $5 - x < 0$, and $|5 - x| = -(5 - x) = x - 5$. **27** If $$x < 2$$, then $2 - x > 0$, and $|2 - x| = 2 - x$. **28** If $$x \ge -7$$, then $7 + x \ge 0$, and $|7 + x| = 7 + x$ **29** If $$a < b$$, then $a - b < 0$, and $|a - b| = -(a - b) = b - a$. **30** If $$a > b$$, then $a - b > 0$, and $|a - b| = a - b$. **31** Since $$x^2 + 4 > 0$$ for every x , $|x^2 + 4| = x^2 + 4$. **32** Since $$-x^2 - 1 < 0$$ for every x , $|-x^2 - 1| = -(-x^2 - 1) = x^2 + 1$. 33 LS = $$\frac{ab + ac}{a} = \frac{ab}{a} + \frac{ac}{a} = b + c$$ RS (which is $b + ac$). $$\boxed{34} \text{ LS} = \frac{ab + ac}{a} = \frac{ab}{a} + \frac{ac}{a} = b + c = RS.$$ $$\boxed{35} LS = \frac{b+c}{a} = \frac{b}{a} + \frac{c}{a} \boxed{=} RS.$$ $$\boxed{\textbf{36}} \ \text{LS} = \frac{a+c}{b+d} = \frac{a}{b+d} + \frac{c}{b+d} \boxed{\not\equiv} \text{RS} \ \Big(\text{which is } \frac{a}{b} + \frac{c}{d} \Big).$$ **37** LS = $$(a \div b) \div c = \frac{a}{b} \cdot \frac{1}{c} = \frac{a}{bc}$$. RS = $a \div (b \div c) = a \div \frac{b}{c} = a \cdot \frac{c}{b} = \frac{ac}{b}$. LS \neq RS **38** LS = $$(a - b) - c = a - b - c$$. RS = $a - (b - c) = a - b + c$. LS \neq RS **39** LS = $$\frac{a-b}{b-a} = \frac{-(b-a)}{b-a} = -1$$ RS. **40** LS = $$-(a+b) = -a - b \neq \mathbb{R}$$ S (which is $-a+b$). **41** (a) On the TI-83/4 Plus, the absolute value function is choice 1 under MATH, NUM. Enter abs $(3.2^2 - \sqrt{(4.27)})$. $|3.2^2 - \sqrt{4.27}| \approx 8.1736$ **(b)** $$\sqrt{(15.6-1.5)^2+(4.3-5.4)^2}\approx 14.1428$$ **42** (a) $$\frac{3.42 - 1.29}{5.83 + 2.64} \approx 0.2515$$ **(b)** $$\pi^3 \approx 31.0063$$ **43** (a) $$\frac{1.2 \times 10^3}{3.1 \times 10^2 + 1.52 \times 10^3} \approx 0.6557 = 6.557 \times 10^{-1}$$ **Note:** For the TI-83/4 Plus, use 1.2E3/(3.1E2 + 1.52E3), where E is obtained by pressing 2nd EE **(b)** $$(1.23 \times 10^{-4}) + \sqrt{4.5 \times 10^3} \approx 67.08 = 6.708 \times 10^1$$ **[44]** (a) $$\sqrt{|3.45 - 1.2 \times 10^4| + 10^5} \approx 334.7 = 3.347 \times 10^2$$ **(b)** $$(1.79 \times 10^2) \times (9.84 \times 10^3) = 1,761,360 \approx 1.761 \times 10^6$$ - Construct a right triangle with sides of lengths $\sqrt{2}$ and 1. The hypotenuse will have length $\sqrt{\left(\sqrt{2}\right)^2+1^2}=\sqrt{3}$. Next construct a right triangle with sides of lengths $\sqrt{3}$ and $\sqrt{2}$. The hypotenuse will have length $\sqrt{\left(\sqrt{3}\right)^2+\left(\sqrt{2}\right)^2}=\sqrt{5}$. - **46** Use $C = 2\pi r$ with r = 1, 2, and 10 to obtain $2\pi, 4\pi$, and 20π units from the origin. - 47 The large rectangle has area = width \times length = a(b+c). The sum of the areas of the two small rectangles is ab + ac. Since the areas are the same, we have a(b+c) = ab + ac. - **49** (a) Since the decimal point is 5 places to the right of the first nonzero digit, $427,000 = 4.27 \times 10^5$. - (b) Since the decimal point is 8 places to the left of the first nonzero digit, $0.000\,000\,093 = 9.3 \times 10^{-8}$. - (c) Since the decimal point is 8 places to the right of the first nonzero digit, $810,000,000 = 8.1 \times 10^8$. **50** (a) $$85,200 = 8.52 \times 10^4$$ **(b)** $$0.0000054 = 5.4 \times 10^{-6}$$ (c) $$24,900,000 = 2.49 \times 10^7$$ - **51** (a) Moving the decimal point 5 places to the right, we have $8.3 \times 10^5 = 830,000$. - **(b)** Moving the decimal point 12 places to the left, we have $2.9 \times 10^{-12} = 0.000000000000009$. - (c) Moving the decimal point 8 places to the right, we have $5.64 \times 10^8 = 564,000,000$. **52** (a) $$2.3 \times 10^7 = 23,000,000$$ **(b)** $$7.01 \times 10^{-9} = 0.000\,000\,007\,01$$ (c) $$1.25 \times
10^{10} = 12,500,000,000$$ **53** Since the decimal point is 24 places to the left of the first nonzero digit, $$0.000\,000\,000\,000\,000\,000\,000\,001\,7 = 1.7 \times 10^{-24}$$. answer. $\frac{186,000 \text{ miles}}{\text{second}} \cdot \frac{60 \text{ seconds}}{1 \text{ minute}} \cdot \frac{60 \text{ minutes}}{1 \text{ hour}} \cdot \frac{24 \text{ hours}}{1 \text{ day}} \cdot \frac{365 \text{ days}}{1 \text{ year}} \cdot 1 \text{ year} \approx 5.87 \times 10^{12} \text{ minute}$ **56** (a) $100 \text{ billion} = 100,000,000,000 = 1 \times 10^{11}$ **(b)** $$d \approx (100,000 \text{ yr}) \left(5.87 \times 10^{12} \frac{\text{mi}}{\text{yr}} \right) = 5.87 \times 10^{17} \text{ mi}$$ **58** $$(2.5 \text{ million})(0.00035\%) = (2.5 \times 10^6)(3.5 \times 10^{-6}) = 8.75 \approx 9 \text{ halibut}$$ **61** (a) $$1 \text{ ft}^2 = 144 \text{ in}^2$$, so the force on one square foot of a wall is $144 \text{ in}^2 \times 1.4 \text{ lb/in}^2 = 201.6 \text{ lb}$. **(b)** The area of the wall is $$40 \times 8 = 320 \text{ ft}^2$$, or $320 \text{ ft}^2 \times 144 \text{ in}^2/\text{ft}^2 = 46{,}080 \text{ in}^2$. The total force is $46,080 \text{ in}^2 \times 1.4 \text{ lb/in}^2 = 64,512 \text{ lb.}$ Converting to tons, we have 64,512 lb/(2000 lb/ton) = 32.256 tons. **62** (a) We start with 400 adults, 150 yearlings, and 200 calves $$\{\text{total} = 750\}$$ Number of Adults $$=$$ surviving adults $+$ surviving yearlings $$= (0.90)(400) + (0.80)(150) = \underline{480}$$ $$=(0.75)(200)=150$$ $$= (0.50)(480) = \underline{240}$$ (b) 75% of last spring's calves equal the number of this year's yearlings (150), so the number of calves is 200. The number of calves is equal to the number of adult females and this is one-half of the number of adults, so the number of adults is 400. 90% of these (360) are part of the 400 adults this year. The other 40 adults represent 80% of last year's yearlings, so the number of yearlings is 50. #### 1.2 Exercises $$\boxed{1} \quad \left(-\frac{2}{3}\right)^4 = \left(-\frac{2}{3}\right) \cdot \left(-\frac{2}{3}\right) \cdot \left(-\frac{2}{3}\right) \cdot \left(-\frac{2}{3}\right) = \frac{16}{81}$$ **Note:** Do not confuse $(-x)^4$ and $-x^4$ since $(-x)^4 = x^4$ and $-x^4$ is the negative of x^4 . $$(-3)^3 = -27 = \frac{-27}{1}$$ $$\boxed{3} \quad \frac{2^{-3}}{3^{-2}} = \frac{3^2}{2^3} = \frac{9}{8}$$ **Note:** Remember that negative exponents don't necessarily give negative results—that is, $2^{-3} = \frac{1}{2^3} = \frac{1}{8}$, not $-\frac{1}{8}$. $$\boxed{4} \quad \frac{2^0 + 0^2}{2 + 0} = \frac{1 + 0}{2} = \frac{1}{2}$$ **5** $$-2^4 + 3^{-1} = -16 + \frac{1}{3} = -\frac{48}{3} + \frac{1}{3} = -\frac{47}{3}$$ **6** $$\left(-\frac{3}{2}\right)^4 - 2^{-4} = \frac{81}{16} - \frac{1}{16} = \frac{80}{16} = \frac{5}{1}$$ $$\boxed{7} \quad 9^{5/2} = \left(\sqrt{9}\right)^5 = 3^5 = \frac{243}{1}$$ **8** $$16^{-3/4} = 1/16^{3/4} = 1/\left(\sqrt[4]{16}\right)^3 = 1/2^3 = \frac{1}{8}$$ **9** $$(-0.008)^{2/3} = (\sqrt[3]{-0.008})^2 = (-0.2)^2 = 0.04 = \frac{4}{100} = \frac{1}{25}$$ **10** $$(0.008)^{-2/3} = 1/(0.008)^{2/3} = 1/(\sqrt[3]{0.008})^2 = 1/(0.2)^2 = 1/(0.04) = \frac{25}{1}$$ $$\boxed{11} \left(\frac{1}{2}x^4\right)(16x^5) = \left(\frac{1}{2}\cdot 16\right)x^{4+5} = 8x^9$$ $$\boxed{12} (-3x^{-2})(4x^4) = (-3 \cdot 4)x^{-2+4} = -12x^2$$ **13** A common mistake is to write $x^3x^2 = x^6$, and another is to write $(x^2)^3 = x^5$. The following solution illustrates the proper use of the exponent rules. $$\frac{(2x^3)(3x^2)}{(x^2)^3} = \frac{(2\cdot 3)x^{3+2}}{x^{2\cdot 3}} = \frac{6x^5}{x^6} = 6x^{5-6} = 6x^{-1} = \frac{6}{x^5}$$ $$\boxed{14} \ \frac{(2x^2)^3 y^2}{4x^4 y^2} = \frac{8x^6}{4x^4} = 2x^2$$ **15** $$\left(\frac{1}{6}a^5\right)(-3a^2)\left(4a^7\right) = \frac{1}{6}\cdot(-3)\cdot 4\cdot a^{5+2+7} = -2a^{14}$$ $$\boxed{\textbf{16}} \ (-4b^3) \left(\frac{1}{6}b^2\right) \left(-9b^4\right) = (-4) \cdot \frac{1}{6} \cdot (-9) \cdot b^{3+2+4} = 6b^9$$ $$\boxed{\textbf{17}} \ \frac{\left(6x^3\right)^2}{\left(2x^2\right)^3} \cdot \left(3x^2\right)^0 = \frac{6^2x^{3\cdot2}}{2^3x^{2\cdot3}} \cdot 1 \ \{\text{an expression raised to the zero power is equal to } 1\} \ = \frac{36x^6}{8x^6} = \frac{36}{8} = \frac{9}{2}$$ $$\boxed{\textbf{18}} \ \frac{(3y^3)(2y^2)^2}{(y^4)^3} \cdot (5y^3)^0 = \frac{(3y^3)(4y^4)}{y^{12}} \cdot 1 = \frac{12y^7}{y^{12}} = \frac{12}{y^5}$$ $$\boxed{\textbf{19}} \left(3u^7v^3\right) \left(4u^4v^{-5}\right) = 12u^{7+4}v^{3+(-5)} = 12u^{11}v^{-2} = \frac{12u^{11}}{v^2}$$ $$20 (x^2yz^3)(-2xz^2)(x^3y^{-2}) = -2x^{2+1+3}y^{1-2}z^{3+2} = -2x^6y^{-1}z^5 = \frac{-2x^6z^5}{y^{-1}}z^5 \frac{-2x^6}{y^{-1}}z^5 \frac{-2x^6}{$$ **21** $$(8x^4y^{-3})(\frac{1}{2}x^{-5}y^2) = 4x^{4-5}y^{-3+2} = 4x^{-1}y^{-1} = \frac{4}{xy}$$ $$\boxed{\textbf{22}} \left(\frac{4a^2b}{a^3b^2}\right) \left(\frac{5a^2b}{2b^4}\right) = \frac{20a^{2+2}b^{1+1}}{2a^3b^{2+4}} = \frac{20a^4b^2}{2a^3b^6} = \frac{10a^{4-3}b^{2-6}}{1} = \frac{10a}{b^4}$$ $$\boxed{\textbf{23}} \left(\frac{1}{3}x^4y^{-3}\right)^{-2} = \left(\frac{1}{3}\right)^{-2} \left(x^4\right)^{-2} \left(y^{-3}\right)^{-2} = \left(\frac{3}{1}\right)^2 x^{-8}y^6 = 3^2 x^{-8}y^6 = \frac{9y^6}{x^8}$$ $$\boxed{\textbf{24}} \; (-2xy^2)^5 \left(\frac{x^7}{8y^3}\right) = (-32x^5y^{10}) \left(\frac{x^7}{8y^3}\right) = -4x^{12}y^7$$ $$\boxed{\textbf{25}} \ (3y^3)^4 (4y^2)^{-3} = 3^4 y^{12} \cdot 4^{-3} y^{-6} = 81 y^6 \cdot \frac{1}{4^3} = \frac{81}{64} y^6$$ **26** $$(-3a^2b^{-5})^3 = -27a^6b^{-15} = -\frac{27a^6}{b^{15}}$$ $$\boxed{27} \left(-2r^4s^{-3} \right)^{-2} = (-2)^{-2}r^{-8}s^6 = \frac{s^6}{\left(-2 \right)^2r^8} = \frac{s^6}{4r^8}$$ $$28 (2x^2y^{-5})(6x^{-3}y)(\frac{1}{3}x^{-1}y^3) = 4x^{-2}y^{-1} = \frac{4}{x^2y^{-1}}$$ **29** $$(5x^2y^{-3})(4x^{-5}y^4) = 20x^{2-5}y^{-3+4} = 20x^{-3}y^1 = \frac{20y}{x^3}$$ $$\boxed{\textbf{30}} \; \left(-2r^2s \right)^5 \left(3r^{-1}s^3 \right)^2 = \left(-32r^{10}s^5 \right) \left(9r^{-2}s^6 \right) = -288r^8s^{11}$$ $$\boxed{\textbf{31}} \left(\frac{3x^5y^4z}{x^0y^{-3}z} \right)^2 \text{ \{remember that } x^0=1 \text{, cancel } z \} \\ = \frac{9x^{10}y^8}{y^{-6}} = 9x^{10}y^{8-(-6)} = 9x^{10}y^{14} \\ = \frac{9x^{10}y^8}{y^{-6}} + 9x$$ $$\boxed{\textbf{32}} \left(4a^2b\right)^4 \left(\frac{-a^3}{2b}\right)^2 = \left(256a^8b^4\right) \left(\frac{a^6}{4b^2}\right) = 64a^{14}b^2$$ **33** $$(-5a^{3/2})(2a^{1/2}) = -5 \cdot 2a^{(3/2)+(1/2)} = -10a^{4/2} = 8a^2$$ **34** $$(-6x^{7/5})(2x^{8/5}) = -6 \cdot 2x^{(7/5)+(8/5)} = -12x^{15/5} = -12x^3$$ **35** $$(3x^{5/6})(8x^{2/3}) = 3 \cdot 8x^{(5/6)+(4/6)} = 24x^{9/6} = 24x^{3/2}$$ **36** $$(8r)^{1/3}(2r^{1/2}) = (2r^{1/3})(2r^{1/2}) = 4r^{(2/6)+(3/6)} = 4r^{5/6}$$ $$\boxed{\mathbf{\overline{37}}} \left(27 a^6\right)^{-2/3} = 27^{-2/3} a^{-12/3} = \frac{a^{-4}}{27^{2/3}} = \frac{1}{\left(\sqrt[3]{27}\right)^2 a^4} = \frac{1}{3^2 \, a^4} = \frac{1}{9 a^4}$$ $$\boxed{\textbf{38}} \left(25z^4\right)^{-3/2} = 25^{-3/2}z^{-12/2} = \frac{z^{-6}}{25^{3/2}} = \frac{1}{\left(\sqrt{25}\right)^3 z^6} = \frac{1}{5^3 z^6} = \frac{1}{125z^6}$$ $$\boxed{\textbf{39}} \left(8x^{-2/3}\right)x^{1/6} = 8x^{(-4/6) + (1/6)} = 8x^{-3/6} = \frac{8}{x^{1/2}} \qquad \boxed{\textbf{40}} \left(3x^{1/2}\right)\left(-2x^{5/2}\right) = -6x^{(1/2) + (5/2)} = -6x^3$$ $$\boxed{\textbf{41}} \left(\frac{-8x^3}{y^{-6}} \right)^{2/3} = \frac{(-8)^{2/3} (x^3)^{2/3}}{(y^{-6})^{2/3}} = \frac{\left(\sqrt[3]{-8} \right)^2 x^{(3)(2/3)}}{y^{(-6)(2/3)}} = \frac{(-2)^2 x^2}{y^{-4}} = \frac{4x^2}{y^{-4}} = 4x^2 y^4$$ $$\boxed{42} \left(\frac{-y^{3/2}}{y^{-1/3}}\right)^3 = \frac{-y^{9/2}}{y^{-1}} = -y^{11/2}$$ $$\boxed{43} \left(\frac{x^6}{16y^{-4}}\right)^{-1/2} = \frac{x^{-3}}{16^{-1/2}y^2} = \frac{16^{1/2}}{x^3y^2} = \frac{4}{x^3y^2}$$ $$\boxed{\textbf{43}} \left(\frac{x^6}{16y^{-4}}\right)^{-1/2} = \frac{x^{-3}}{16^{-1/2}y^2} = \frac{16^{1/2}}{x^3y^2} = \frac{4}{x^3y^2} \qquad \boxed{\textbf{44}} \left(\frac{c^{-4}}{81d^8}\right)^{3/4} = \frac{c^{-3}}{\left(\sqrt[4]{81}\right)^3 d^6} = \frac{c^{-3}}{3^3 d^6} = \frac{1}{27c^3 d^6}$$ $$\boxed{\textbf{45}} \frac{(x^6y^3)^{-1/3}}{(x^4y^2)^{-1/2}} = \frac{(x^6)^{-1/3}(y^3)^{-1/3}}{(x^4)^{-1/2}(y^2)^{-1/2}} = \frac{x^{-2}y^{-1}}{x^{-2}y^{-1}} = 1$$ **46** $$a^{4/3}a^{-3/2}a^{1/6} = a^{(8/6)-(9/6)+(1/6)} = a^{0/6} = a^0 = 1$$ **47** $$\sqrt[4]{x^4+y} = (x^4+y)^{1/4}$$ **48** $$\sqrt[3]{x^3 + y^2} = (x^3 + y^2)^{1/3}$$ **49** $$\sqrt[3]{(a+b)^2} = [(a+b)^2]^{1/3} = (a+b)^{2/3}$$ **50** $$\sqrt{a+\sqrt{b}} = (a+b^{1/2})^{1/2}$$ **51** $$\sqrt{x^2 + y^2} = (x^2 + y^2)^{1/2}$$ Note: $\sqrt{x^2 + y^2} \neq x + y$ **52** $$\sqrt[3]{r^3 - s^3} = (r^3 - s^3)^{1/3}$$ **53** (a) $$4x^{3/2} = 4x^1x^{1/2} = 4x\sqrt{x}$$ (b) $(4x)^{3/2} = (4x)^1(4x)^{1/2} = (4x)^14^{1/2}x^{1/2} = 4x \cdot 2 \cdot x^{1/2} = 8x\sqrt{x}$ **54** (a) $$4 + x^{3/2} = 4 + x^1 x^{1/2} = 4 + x \sqrt{x}$$ **(b)** $$(4+x)^{3/2} = (4+x)^1 (4+x)^{1/2} = (4+x)\sqrt{4+x}$$ **55** (a) $$8 - y^{1/3} = 8 - \sqrt[3]{y}$$ **(b)** $$(8-y)^{1/3} = \sqrt[3]{8-y}$$ **56** (a) $$64y^{1/3} = 64\sqrt[3]{y}$$ **(b)** $$(64y)^{1/3} = 64^{1/3}y^{1/3} = 4\sqrt[3]{y}$$ $$57 \sqrt{81} = \sqrt{9^2} = 9$$ **58** $$\sqrt[3]{-216} = \sqrt[3]{(-6)^3} = -6$$ **59** $$\sqrt[5]{-64} = \sqrt[5]{-32} \sqrt[5]{2} = \sqrt[5]{(-2)^5} \sqrt[5]{2} = -2 \sqrt[5]{2}$$ **60** $$\sqrt[4]{512} = \sqrt[4]{256} \sqrt[4]{2} = \sqrt[4]{4^4} \sqrt[4]{2} = 4\sqrt[4]{2}$$ **[61]** In the denominator, you would like to have $\sqrt[3]{2^3}$. How do you get it? Multiply by $\sqrt[3]{2^2}$, or, equivalently, $\sqrt[3]{4}$. Of course, we have to multiply the numerator by the same value so that we don't change the value of the given fraction. $$\frac{1}{\sqrt[3]{2}} = \frac{1}{\sqrt[3]{2}} \cdot \frac{\sqrt[3]{4}}{\sqrt[3]{4}} = \frac{\sqrt[3]{4}}{\sqrt[3]{2} \cdot 4} = \frac{\sqrt[3]{4}}{\sqrt[3]{8}} = \frac{\sqrt[3]{4}}{2} = \frac{1}{2}\sqrt[3]{4}$$ **62** $$\sqrt{\frac{1}{5}} = \frac{\sqrt{1}}{\sqrt{5}} = \frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{1}{5}\sqrt{5}$$ **[63]** $$\sqrt{9x^{-4}y^6} = (9x^{-4}y^6)^{1/2} =
9^{1/2}(x^{-4})^{1/2}(y^6)^{1/2} = 3x^{-2}y^3 = \frac{3y^3}{x^2}$$ $$\boxed{64} \sqrt{16a^8b^{-2}} = 4a^4b^{-1} = \frac{4a^4}{b}$$ **[65]** $$\sqrt[3]{8a^6b^{-3}} = 2a^2b^{-1} = \frac{2a^2}{b}$$ **66** $$\sqrt[4]{81r^5s^8} = \sqrt[4]{3^4r^4s^8} \sqrt[4]{r} = 3rs^2\sqrt[4]{r}$$ **Note:** For exercises similar to numbers 67–74, pick a multiplier that will make all of the exponents of the terms in the denominator a multiple of the index. **67** The index is 2. Choose the multiplier to be $\sqrt{2y}$ so that the denominator contains only terms with even exponents. $$\sqrt{\frac{3x}{2y^3}} = \sqrt{\frac{3x}{2y^3}} \cdot \frac{\sqrt{2y}}{\sqrt{2y}} = \frac{\sqrt{6xy}}{\sqrt{4y^4}} = \frac{\sqrt{6xy}}{2y^2}, \text{ or } \frac{1}{2y^2}\sqrt{6xy}$$ $$\boxed{\textbf{68}} \ \sqrt{\frac{1}{3x^3y}} = \sqrt{\frac{1}{3x^3y}} \cdot \frac{\sqrt{3xy}}{\sqrt{3xy}} = \frac{\sqrt{3xy}}{\sqrt{9x^4y^2}} = \frac{1}{3x^2y} \sqrt{3xy}$$ **69** The index is 3. Choose the multiplier to be $\sqrt[3]{3x^2}$ so that the denominator contains only terms with exponents that are multiples of 3. $$\sqrt[3]{\frac{2x^4y^4}{9x}} = \sqrt[3]{\frac{2x^4y^4}{9x}} \cdot \frac{\sqrt[3]{3x^2}}{\sqrt[3]{3x^2}} = \frac{\sqrt[3]{6x^6y^4}}{\sqrt[3]{27x^3}} = \frac{\sqrt[3]{x^6y^3}\sqrt[3]{6y}}{3x} = \frac{x^2y\sqrt[3]{6y}}{3x} = \frac{xy}{3}\sqrt[3]{6y}$$ $$\boxed{\textbf{70}} \sqrt[3]{\frac{3x^2y^5}{4x}} = \sqrt[3]{\frac{3x^2y^5}{4x}} \cdot \frac{\sqrt[3]{2x^2}}{\sqrt[3]{2x^2}} = \frac{\sqrt[3]{6x^4y^5}}{\sqrt[3]{8x^3}} = \frac{\sqrt[3]{x^3y^3} \sqrt[3]{6xy^2}}{2x} = \frac{xy\sqrt[3]{6xy^2}}{2x} = \frac{y}{2}\sqrt[3]{6xy^2}$$ **71** The index is 4. Choose the multiplier to be $\sqrt[4]{3x^2}$ so that the denominator contains only terms with exponents that are multiples of 4. $$\sqrt[4]{\frac{5x^8y^3}{27x^2}} = \sqrt[4]{\frac{5x^8y^3}{27x^2}} \cdot \sqrt[4]{\frac{4\sqrt{3}x^2}{\sqrt[4]{3}x^2}} = \frac{\sqrt[4]{15x^{10}y^3}}{\sqrt[4]{81x^4}} = \frac{\sqrt[4]{x^8}}{3x} \sqrt[4]{15x^2y^3} = \frac{x^2}{3x} \sqrt[4]{15x^2y^3} = \frac{x}{3} \sqrt[4]{15x^2y^3}$$ $$\boxed{\textbf{72}} \sqrt[4]{\frac{x^7y^{12}}{125x}} = \sqrt[4]{\frac{x^7y^{12}}{125x}} \cdot \frac{\sqrt[4]{5x^3}}{\sqrt[4]{5x^3}} = \frac{\sqrt[4]{5x^{10}y^{12}}}{\sqrt[4]{625x^4}} = \frac{\sqrt[4]{x^8y^{12}}}{5x} = \frac{x^2y^3\sqrt[4]{5x^2}}{5x} = \frac{xy^3\sqrt[4]{5x^2}}{5x} \frac{xy^3\sqrt[4]{5x}}{5x} \frac{xy^$$ **73** The index is 5. Choose the multiplier to be $\sqrt[5]{4x^2}$ so that the denominator contains only terms with exponents that are multiples of 5. $$\sqrt[5]{\frac{5x^7y^2}{8x^3}} = \sqrt[5]{\frac{5x^7y^2}{8x^3}} \cdot \sqrt[5]{\frac{5\sqrt{4x^2}}{8x^3}} \cdot \sqrt[5]{\frac{5\sqrt{4x^2}}{\sqrt[5]{4x^2}}} = \sqrt[5]{\frac{5\sqrt{20}x^9y^2}{\sqrt[5]{32x^5}}} = \sqrt[5]{\frac{5\sqrt{x^5}}{\sqrt[5]{20}x^4y^2}} = \frac{x\sqrt[5]{20x^4y^2}}{2x} = \frac{1}{2}\sqrt[5]{20x^4y^2}$$ $$\boxed{\textbf{74}} \sqrt[5]{\frac{3x^{11}y^3}{9x^2}} = \sqrt[5]{\frac{3x^{11}y^3}{9x^2}} \cdot \sqrt[5]{\frac{5\sqrt{27}x^3}{9x^2}} = \sqrt[5]{\frac{5\sqrt{81}x^{14}y^3}} = \sqrt[5]{\frac{5\sqrt{81}x^{14}y^3}{3x}} = \sqrt[5]{\frac{5\sqrt{81}x^{4}y^3}{3x}} \sqrt[5]$$ **75** $$\sqrt[4]{(5x^5y^{-2})^4} = 5x^5y^{-2} = \frac{5x^5}{y^2}$$ $$\boxed{76} \ \sqrt[6]{(7u^{-3}v^4)^6} = 7u^{-3}v^4 = \frac{7v^4}{u^3}$$ $$\boxed{\textbf{77}} \ \sqrt[5]{\frac{8x^3}{y^4}} \sqrt[5]{\frac{4x^4}{y^2}} = \sqrt[5]{\frac{8x^3}{y^4}} \sqrt[5]{\frac{4x^4}{y^2}} \cdot \sqrt[5]{\frac{4x^4}{y^2}} \cdot \frac{\sqrt[5]{y^4}}{\sqrt[5]{y^4}} = \frac{\sqrt[5]{32x^5}}{\sqrt[5]{y^{10}}} = \frac{\sqrt[5]{32x^5}}{y^2} \sqrt[5]{x^2y^4} = \frac{2x}{y^2} \sqrt[5]{x^2y^4} = \frac{x^2}{y^2} \sqrt[5]{x^2} + \frac{x^2}{$$ **78** $$\sqrt{5xy^7}$$ $\sqrt{15x^3y^3} = \sqrt{25x^4y^{10}}$ $\sqrt{3} = 5x^2y^5\sqrt{3}$ $$\boxed{\textbf{79}} \ \sqrt[3]{3t^4v^2} \sqrt[3]{-9t^{-1}v^4} = \sqrt[3]{-27t^3v^6} = -3tv^2$$ **80** $$\sqrt[3]{(2r-s)^3} = 2r-s$$ **[81]** $$\sqrt{x^2y^4} = \sqrt{(x^2)(y^2)^2} = \sqrt{x^2}\sqrt{(y^2)^2} = |x||y^2| = |x|y^2$$ since y^2 is always nonnegative. **82** $$\sqrt{x^4y^2} = \sqrt{(x^2)^2(y^2)} = \sqrt{(x^2)^2}\sqrt{y^2} = |x^2||y| = x^2|y|$$ since x^2 is always nonnegative. **83** $$\sqrt{x^6y^4} = \sqrt{(x^3)^2(y^2)^2} = \sqrt{(x^3)^2}\sqrt{(y^2)^2} = |x^3||y^2| = |x^3|y^2$$ since y^2 is always nonnegative. **Note:** $|x^3|$ could be written as $x^2|x|$. $$\boxed{\textbf{84}} \ \sqrt{x^4y^{10}} = \sqrt{(x^2)^2(y^5)^2} = |x^2||y^5| = x^2|y^5|$$ **85** $$\sqrt[4]{x^8(y-3)^{12}} = \sqrt[4]{(x^2)^4 ((y-3)^3)^4} = |x^2| |(y-3)^3| = x^2 |(y-3)^3|, \text{ or } x^2(y-3)^2 |(y-3)|$$ **86** $$\sqrt[4]{(x+2)^{12}y^4} = \sqrt[4]{((x+2)^3)^4y^4} = |(x+2)^3||y|, \text{ or } (x+2)^2|(x+2)y|$$ **87** $$(a^r)^2 = a^{2r}$$ $\neq a^{(r^2)}$ since $2r \neq r^2$ for all values of r ; for example, let $r = 1$. **88** Squaring the right side gives us $(a+1)^2 = a^2 + 2a + 1$. Squaring the left side gives us $a^2 + 1$. $a^2 + 2a + 1 \neq a^2 + 1$ for all values of a; for example, let a = 1. **89** $(ab)^{xy} = a^{xy}b^{xy} \neq a^xb^y$ for all values of x and y; for example, let x = 1 and y = 2. **90** $$\sqrt{a^r} = (a^r)^{1/2} = (a^{1/2})^r = (\sqrt{a})^r$$ **91** $$\sqrt[n]{\frac{1}{c}} = \left(\frac{1}{c}\right)^{1/n} = \frac{1^{1/n}}{c^{1/n}} \boxed{=} \frac{1}{\sqrt[n]{c}}$$ **92** $$\frac{1}{a^k} = a^{-k}$$ $\neq a^{1/k}$ since $-k \neq 1/k$ for all values of k; for example, let $k = 1$. **93** (a) $$(-3)^{2/5} = [(-3)^2]^{1/5} = 9^{1/5} \approx 1.5518$$ **(b)** $$(-7)^{4/3} = \left[(-7)^4 \right]^{1/3} = 2401^{1/3} \approx 13.3905$$ **94** (a) $$(-1.2)^{3/7} = [(-1.2)^3]^{1/7} = (-1.728)^{1/7} \approx -1.0813$$ **(b)** $$(-5.08)^{7/3} = \left[(-5.08)^7 \right]^{1/3} \approx (-87,306.38)^{1/3} \approx -44.3624$$ **95** (a) $$\sqrt{\pi+1} \approx 2.0351$$ **(b)** $$\sqrt[3]{17.1} + 5^{1/4} \approx 4.0717$$ **96** (a) $$(2.6-1.3)^{-2}\approx 0.5917$$ **(b)** $$5\sqrt{7} \approx 70.6807$$ **97** $$$200(1.04)^{180} \approx $232,825.78$$ **98** $$h = 1454 \text{ ft} \implies d = 1.2\sqrt{h} = 1.2\sqrt{1454} \approx 45.8 \text{ mi}$$ **99** $$W = 230 \text{ kg} \implies L = 0.46 \sqrt[3]{W} = 0.46 \sqrt[3]{230} \approx 2.82 \text{ m}$$ **100** $$L = 25 \text{ ft} \implies W = 0.0016L^{2.43} = 0.0016(25)^{2.43} \approx 3.99 \text{ tons}$$ $$\begin{array}{ll} \boxed{\textbf{101}} \ b = 75 \ \text{and} \ w = 180 \quad \Rightarrow \quad W = \frac{w}{\sqrt[3]{b - 35}} = \frac{180}{\sqrt[3]{75 - 35}} \approx 52.6. \\ b = 120 \ \text{and} \ w = 250 \quad \Rightarrow \quad W = \frac{w}{\sqrt[3]{b - 35}} = \frac{250}{\sqrt[3]{120 - 35}} \approx 56.9. \end{array}$$ It is interesting to note that the 75-kg lifter can lift 2.4 times his/her body weight and the 120-kg lifter can lift approximately 2.08 times his/her body weight, but the formula ranks the 120-kg lifter as the superior lifter. **102** (a) $$h = 72$$ in. and $w = 175$ lb $\Rightarrow S = (0.1091)w^{0.425}h^{0.725} = (0.1091)(175)^{0.425}(72)^{0.725} \approx 21.76$ ft². **(b)** h = 66 in. $\Rightarrow S_1 = (0.1091)w^{0.425}(66)^{0.725}$. A 10% increase in weight would be represented by 1.1w and thus $S_2 = (0.1091)(1.1w)^{0.425}(66)^{0.725}$. $S_2/S_1 = (1.1)^{0.425} \approx 1.04$, which represents a 4% increase in S. **103** $$W = 0.1166h^{1.7}$$ | Height | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | |--------|-----|-----|-----|-----|-----|-----|-----|-----| | Weight | 137 | 141 | 145 | 148 | 152 | 156 | 160 | 164 | | Height | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | | Weight | 168 | 172 | 176 | 180 | 184 | 188 | 192 | 196 | **104** $$W = 0.1049h^{1.7}$$ | Height | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | |--------|-----|-----|-----|-----|-----|-----|-----|-----| | Weight | 111 | 114 | 117 | 120 | 123 | 127 | 130 | 133 | | Height | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | | Weight | 137 | 140 | 144 | 147 | 151 | 154 | 158 | 162 | #### 1.3 Exercises $$\boxed{1} \quad (2u+3)(u-4)+4u(u-2)=(2u^2-5u-12)+(4u^2-8u)=6u^2-13u-12$$ $$\boxed{2}$$ $(3u-1)(u+2) + 7u(u+1) = (3u^2 + 5u - 2) + (7u^2 + 7u) = 10u^2 + 12u - 2$ $$\boxed{3} \quad \frac{8x^2y^3 - 6x^3y}{2x^2y} = \frac{8x^2y^3}{2x^2y} - \frac{6x^3y}{2x^2y} = 4y^2 - 3x$$ $$\boxed{4} \quad \frac{6x^2yz^3 - xy^2z}{xyz} = \frac{6x^2yz^3}{xyz} - \frac{xy^2z}{xyz} = 6xz^2 - y$$ **5** We recognize this product as the difference of two squares. $$(2x+7y)(2x-7y) = (2x)^2 - (7y)^2 = 4x^2 - 49y^2$$ **6** $$(5x+3y)(5x-3y)=(5x)^2-(3y)^2=25x^2-9y^2$$ $$\boxed{7} \quad (3x+2y)^2 = (3x)^2 + 2(3x)(2y) + (2y)^2 = 9x^2 + 12xy + 4y^2$$ **8** $$(5x-4y)^2 = (5x)^2 - 2(5x)(4y) + (4y)^2 = 25x^2 - 40xy + 16y^2$$ **9** $$(\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y}) = (\sqrt{x})^2 - (\sqrt{y})^2 = x - y$$ $$\boxed{10} \left(\sqrt{x} + \sqrt{y} \right)^2 \left(\sqrt{x} - \sqrt{y} \right)^2 = \left[\left(\sqrt{x} + \sqrt{y} \right) \left(\sqrt{x} - \sqrt{y} \right) \right]^2 = (x - y)^2 = x^2 - 2xy + y^2$$ 11 Use Product Formula (3) on page 30 of the text. $$(x-2y)^3 = (x)^3 - 3(x)^2(2y) + 3(x)(2y)^2 - (2y)^3 = x^3 - 6x^2y + 12xy^2 - 8y^3$$ $$\boxed{12} (x+3y)^3 = (x)^3 + 3(x)^2(3y) + 3(x)(3y)^2 + (3y)^3 = x^3 + 9x^2y + 27xy^2 + 27y^3$$ - **13** We recognize $8x^2 17x 21$ as a trinomial that may be able to be factored into the product of two binomials. Using trial and error, we obtain $8x^2 17x 21 = (8x + 7)(x 3)$. If you are interested in a sure-fire method for factoring trinomials, see Example 6 on page 48 of the text. - **14** Using trial and error, we obtain $7x^2 + 10x 8 = (7x 4)(x + 2)$. - **15** The factors for $x^2 + 4x + 5$ would have to be of the form $(x + _)$ and $(x + _)$. The factors of 5 are 1 and 5, but their sum is 6 (not 4). Thus, $x^2 + 4x + 5$ is irreducible. - **16** $3x^2 4x + 2$ is irreducible. **17** $$36x^2 - 60x + 25 = (6x - 5)(6x - 5) = (6x - 5)^2$$ **18** $9x^2 + 24x + 16 = (3x + 4)(3x + 4) = (3x + 4)^2$ **19** $$x^4 - 4x^2 = x^2(x^2 - 4) = x^2(x^2 - 2^2) = x^2(x + 2)(x - 2)$$ **20** $$x^3 - 16x = x(x^2 - 16) = x(x^2 - 4^2) = x(x+4)(x-4)$$ **21** We recognize $8x^3 - y^6$ as the difference of two cubes. $$8x^{3} - y^{6} = (2x)^{3} - (y^{2})^{3}
= (2x - y^{2}) \left[(2x)^{2} + (2x)(y^{2}) + (y^{2})^{2} \right]$$ $$= (2x - y^{2}) (4x^{2} + 2xy^{2} + y^{4})$$ $$\boxed{\textbf{22}} \ x^6 - 27y^3 = \left(x^2\right)^3 - \left(3y\right)^3 = \left(x^2 - 3y\right) \left[\left(x^2\right)^2 + \left(x^2\right) (3y) + \left(3y\right)^2 \right] = \left(x^2 - 3y\right) \left(x^4 + 3x^2y + 9y^2\right)$$ **23** We recognize $343x^3 + y^9$ as the sum of two cubes. $$343x^3 + y^9 = (7x)^3 + (y^3)^3 = (7x + y^3) \left[(7x)^2 - (7x)(y^3) + (y^3)^2 \right]$$ $$= (7x + y^3) (49x^2 - 7xy^3 + y^6)$$ $$24 x^3 + 64 = (x)^3 + (4)^3 = (x+4)[(x)^2 - (x)(4) + (4)^2] = (x+4)(x^2 - 4x + 16)$$ $$\begin{array}{ll} \boxed{\textbf{25}} \ 3x^3 + 3x^2 - 27x - 27 = 3\big(x^3 + x^2 - 9x - 9\big) & \{\text{gcf} = 3\} \\ & = 3\big[x^2(x+1) - 9(x+1)\big] & \{\text{factor by grouping}\} \\ & = 3\big(x^2 - 9\big)(x+1) & \{\text{factor out } (x+1)\} \\ & = 3(x+3)(x-3)(x+1) & \{\text{difference of two squares}\} \\ \end{array}$$ **26** $$5x^3 + 10x^2 - 20x - 40 = 5(x^3 + 2x^2 - 4x - 8) = 5[x^2(x+2) - 4(x+2)]$$ = $5(x^2 - 4)(x+2) = 5(x+2)(x-2)(x+2) = 5(x+2)^2(x-2)$ **27** We could treat $a^6 - b^6$ as the difference of two squares or the difference of two cubes. Factoring $a^6 - b^6$ as the difference of two squares and then factoring as the sum and difference of two cubes leads to the following: $$a^{6} - b^{6} = (a^{3})^{2} - (b^{3})^{2} = (a^{3} + b^{3})(a^{3} - b^{3})$$ $$= (a + b)(a - b)(a^{2} - ab + b^{2})(a^{2} + ab + b^{2})$$ **28** $$x^8 - 16 = (x^4)^2 - 4^2 = (x^4 + 4)(x^4 - 4) = (x^4 + 4)(x^2 + 2)(x^2 - 2)$$ **29** We might first try to factor $x^2 + 4x + 4 - 9y^2$ by grouping since it has more than 3 terms, but this would prove to be unsuccessful. Instead, we will group the terms containing x and the constant term together, and then proceed as in Example 2(c). $$x^{2} + 4x + 4 - 9y^{2} = (x+2)^{2} - (3y)^{2} = (x+2+3y)(x+2-3y)$$ **30** $$x^2 - 4y^2 - 6x + 9 = (x^2 - 6x + 9) - 4y^2 = (x - 3)^2 - (2y)^2 = (x - 3 + 2y)(x - 3 - 2y)$$ $$\boxed{\mathbf{31}} \ \frac{y^2 - 25}{y^3 - 125} = \frac{(y+5)(y-5)}{(y-5)(y^2 + 5y + 25)} = \frac{y+5}{y^2 + 5y + 25}$$ $$\boxed{32} \ \frac{12+r-r^2}{r^3+3r^2} = \frac{(3+r)(4-r)}{r^2(r+3)} = \frac{4-r}{r^2}$$ $$\begin{array}{l} \boxed{\textbf{33}} \ \frac{9x^2 - 4}{3x^2 - 5x + 2} \cdot \frac{9x^4 - 6x^3 + 4x^2}{27x^4 + 8x} = \frac{(3x + 2)(3x - 2)}{(3x - 2)(x - 1)} \cdot \frac{x^2(9x^2 - 6x + 4)}{x(27x^3 + 8)} \\ = \frac{(3x + 2)(3x - 2)x^2(9x^2 - 6x + 4)}{(3x - 2)(x - 1)x(3x + 2)(9x^2 - 6x + 4)} = \frac{x}{x - 1} \end{array}$$ $$\boxed{\textbf{34}} \ \frac{5a^2+12a+4}{a^4-16} \ \div \ \frac{25a^2+20a+4}{a^2-2a} = \frac{(5a+2)(a+2)}{(a^2+4)(a+2)(a-2)} \cdot \frac{a(a-2)}{(5a+2)(5a+2)} = \frac{a}{(a^2+4)(5a+2)}$$ $$\boxed{\textbf{35}} \ \frac{4}{3s+1} - \frac{11}{\left(3s+1\right)^2} = \frac{4(3s+1)}{\left(3s+1\right)^2} - \frac{11}{\left(3s+1\right)^2} = \frac{12s+4-11}{\left(3s+1\right)^2} = \frac{12s-7}{\left(3s+1\right)^2}$$ $$\boxed{\textbf{36}} \ \frac{4}{\left(5s-2\right)^2} + \frac{s}{5s-2} = \frac{4}{\left(5s-2\right)^2} + \frac{s(5s-2)}{\left(5s-2\right)^2} = \frac{4+5s^2-2s}{\left(5s-2\right)^2} = \frac{5s^2-2s+4}{\left(5s-2\right)^2}$$ $$\boxed{\textbf{37}} \ \frac{2}{x} + \frac{3x+1}{x^2} - \frac{x-2}{x^3} = \frac{2x^2}{x^3} + \frac{(3x+1)x}{x^3} - \frac{(x-2)}{x^3} = \frac{2x^2+3x^2+x-x+2}{x^3} = \frac{5x^2+2}{x^3}$$ $$\boxed{\textbf{38}} \ \frac{5}{x} - \frac{2x-1}{x^2} + \frac{x+7}{x^3} = \frac{5x^2}{x^3} - \frac{(2x-1)x}{x^3} + \frac{x+7}{x^3} = \frac{5x^2 - 2x^2 + x + x + 7}{x^3} = \frac{3x^2 + 2x + 7}{x^3}$$ $$\begin{array}{c} \overline{\textbf{39}} \ \frac{3t}{t+2} + \frac{5t}{t-2} - \frac{40}{t^2-4} = \frac{3t}{t+2} + \frac{5t}{t-2} - \frac{40}{(t+2)(t-2)} \\ &= \frac{3t(t-2)}{(t+2)(t-2)} + \frac{5t(t+2)}{(t+2)(t-2)} - \frac{40}{(t+2)(t-2)} \\ &= \frac{3t^2-6t+5t^2+10t-40}{(t+2)(t-2)} \\ &= \frac{3t^2-6t+5t^2+10t-40}{(t+2)(t-2)} = \frac{4(2t+5)(t-2)}{(t+2)(t-2)} = \frac{4(2t+5)}{t+2} \\ &= \frac{8t^2+4t-40}{(t+2)(t-2)} = \frac{4(2t^2+t-10)}{(t+2)(t-2)} = \frac{4(2t+5)}{(t+2)(t-2)} = \frac{4(2t+5)}{t+2} \\ \hline \textbf{40} \ \frac{t}{t+3} + \frac{4t}{t-3} - \frac{18}{t^2-9} = \frac{t(t-3)+4t(t+3)-18}{t^2-9} = \frac{5t^2+9t-18}{2t^2-9} = \frac{(5t-6)(t+3)}{(t+3)(t-3)} = \frac{5t-6}{t-3} \\ \hline \textbf{41} \ \frac{4x}{3x-4} + \frac{8}{3x^2-4x} + \frac{2}{x} = \frac{4x(x)+8+2(3x-4)}{x(3x-4)} = \frac{4x^2+6x}{x(3x-4)} = \frac{2x(2x+3)}{x(3x-4)} = \frac{2(2x+3)}{3x-4} \\ \hline \textbf{422} \ \frac{12x}{2x+1} - \frac{3}{2x^2+x} + \frac{5}{x} = \frac{12x(x)-3+5(2x+1)}{x(2x+1)} = \frac{12x^2+10x+2}{x(2x+1)} = \frac{2(6x^2+5x+1)}{x(2x+1)} \\ &= \frac{2(6x^2+5x+1)}{x(2x+1)} = \frac{2(3x+1)}{x(2x+1)} \\ \hline \textbf{43} \ \frac{2x}{2x+2} - \frac{8}{x^2+2x} + \frac{3}{x} = \frac{2x(x)-8+3(x+2)}{x(x+2)} = \frac{2x^2+3x-2}{x(x+2)} = \frac{(2x-1)(x+2)}{x(x+2)} = \frac{2x-1}{x} \\ \hline \textbf{44} \ \frac{5x}{2x+3} - \frac{6}{2x^2+3x} + \frac{2}{x} = \frac{5x(5-6+2(2x+3))}{x(2x+3)} = \frac{5x^2+4x}{x(2x+3)} = \frac{5x+4}{2x+3} \\ \hline \textbf{45} \ 3 + \frac{5}{u} + \frac{2u}{3u+1} = \frac{3u(3u+1)+5(3u+1)+2u(u)}{u(3u+1)} \qquad \text{(common denominator)} \\ &= \frac{9u^2+3u+15+5+2u^2}{u(3u+1)} \qquad \text{(multiply terms)} \\ &= \frac{11u^2+18u+5}{u(3u+1)} \qquad \text{(add like terms)} \\ \hline \textbf{46} \ 6 + \frac{2}{u} - \frac{3u}{u+5} = \frac{6x}{x^2-4} + \frac{3}{x-2} = \frac{2x+1}{(x+2)^2} - \frac{6x}{(x+2)^2(x-2)} + \frac{3}{x-2} \\ &= \frac{(2x+1)(x-2)-6x(x+2)+3x^2+4x+4}{(x+2)^2(x-2)} = \frac{(x+5)(x-2)}{(x+2)^2(x-2)} = -\frac{x+5}{(x+2)^2} \\ &= \frac{2x^2-3x-2-6x^2-12x+3x^2+12x+12}{(x+2)^2(x-2)} = -\frac{x+5}{(x+2)^2} \\ &= \frac{-x^2-3x+10}{x^2+6x+9} + \frac{7}{x-3} = \frac{4}{x+3} + \frac{5x}{x^2-9} + \frac{7}{x-3} = \frac{4}{x+3} + \frac{5x}{x^2-9} + \frac{7}{x-3} = \frac{4(x+3)-5x}{x^2-9} + \frac{7}{x-3} = \frac{4(x+3)-5x}{x^2-9} = \frac{4(x+3)-5x}{x^2-9} = \frac{16x+9}{x^2-9} \\ &= \frac{12x^2+1}{x^2+6x+9} + \frac{12x^2+1}{x^2+1} + \frac{12x}{x^2+1} \frac{12x}{x^2+1$$ **49** The lcd of the entire expression is ab. Thus, we will multiply both the numerator and denominator by ab. $$\frac{\frac{b}{a} - \frac{a}{b}}{\frac{1}{a} - \frac{1}{b}} = \frac{\left(\frac{b}{a} - \frac{a}{b}\right) \cdot ab}{\left(\frac{1}{a} - \frac{1}{b}\right) \cdot ab} = \frac{b^2 - a^2}{b - a} = \frac{(b + a)(b - a)}{b - a} = a + b$$ **50** The lcd of the entire expression is x^2y^2 . Thus, we will multiply both the numerator and denominator by x^2y^2 . $$\frac{\frac{x}{y^2} - \frac{y}{x^2}}{\frac{1}{y^2} - \frac{1}{x^2}} = \frac{\left(\frac{x}{y^2} - \frac{y}{x^2}\right) \cdot x^2 y^2}{\left(\frac{1}{y^2} - \frac{1}{x^2}\right) \cdot x^2 y^2} = \frac{x^3 - y^3}{x^2 - y^2} = \frac{(x - y)(x^2 + xy + y^2)}{(x + y)(x - y)} = \frac{x^2 + xy + y^2}{x + y}$$ **51** The lcd of the entire expression is xy. Thus, we will multiply both the numerator and denominator by xy. $$\frac{y^{-1} + x^{-1}}{(xy)^{-1}} = \frac{\frac{1}{y} + \frac{1}{x}}{\frac{1}{xy}} = \frac{\left(\frac{1}{y} + \frac{1}{x}\right) \cdot xy}{\left(\frac{1}{xy}\right) \cdot xy} = \frac{x+y}{1} = x+y$$ $$\boxed{52} \ \frac{y^{-2} - x^{-2}}{y^{-2} + x^{-2}} = \frac{\frac{1}{y^2} - \frac{1}{x^2}}{\frac{1}{y^2} + \frac{1}{x^2}} = \frac{\left(\frac{1}{y^2} - \frac{1}{x^2}\right) \cdot x^2 y^2}{\left(\frac{1}{y^2} + \frac{1}{x^2}\right) \cdot x^2 y^2} = \frac{x^2 - y^2}{x^2 + y^2}$$ $$\boxed{\textbf{53}} \ \frac{\frac{r}{s} + \frac{s}{r}}{\frac{r^2}{s^2} - \frac{s^2}{r^2}} = \frac{\left(\frac{r}{s} + \frac{s}{r}\right) \cdot r^2 s^2}{\left(\frac{r^2}{s^2} - \frac{s^2}{r^2}\right) \cdot r^2 s^2} = \frac{r^3 s + r s^3}{r^4 - s^4} = \frac{r s (r^2 + s^2)}{(r^2 + s^2)(r^2 - s^2)} = \frac{r s}{r^2 - s^2}$$ $$\boxed{ 54} \ \frac{\frac{2}{w} - \frac{4}{2w+1}}{\frac{5}{w} + \frac{8}{2w+1}} = \frac{\frac{2(2w+1) - 4w}{w(2w+1)}}{\frac{5(2w+1) + 8w}{w(2w+1)}} = \frac{4w+2-4w}{10w+5+8w} = \frac{2}{18w+5}$$ $$\frac{(x+h)^2 - 3(x+h) - (x^2 - 3x)}{h} = \frac{x^2 + 2xh + h^2 - 3x - 3h - x^2 + 3x}{h}$$ $$= \frac{2xh + h^2 - 3h}{h} = \frac{h(2x+h-3)}{h} = 2x + h - 3$$ $$\frac{(x+h)^3 + 5(x+h) - (x^3 + 5x)}{h} = \frac{x^3 + 3x^2h + 3xh^2 + h^3 + 5x + 5h - x^3 - 5x}{h}$$ $$= \frac{3x^2h + 3xh^2 + h^3 + 5h}{h}$$ $$= \frac{h(3x^2 + 3xh + h^2 + 5)}{h} = 3x^2 + 3xh + h^2 + 5$$ $$\boxed{57} \quad \frac{\frac{5}{x-1} - \frac{5}{a-1}}{x-a} = \frac{\frac{5(a-1) - 5(x-1)}{(x-1)(a-1)}}{x-a} = \frac{5a - 5x}{(x-1)(a-1)(x-a)} = \frac{5(a-x)}{(x-1)(a-1)(x-a)} = \frac{5}{(x-1)(a-1)}$$ $$= -\frac{5}{(x-1)(a-1)}$$ $$\boxed{58} \frac{\frac{x+2}{x} - \frac{a+2}{a}}{x-a} = \frac{\frac{a(x+2) - x(a+2)}{ax}}{x-a} = \frac{2a - 2x}{ax(x-a)} = \frac{2(a-x)}{ax(x-a)} = -\frac{2}{ax}$$ $$\frac{1}{(x+h)^3} - \frac{1}{x^3} = \frac{\frac{x^3 - (x+h)^3}{(x+h)^3 x^3}}{\frac{x^3 - (x+h)^3}{h}}$$ $$= \frac{x^3 - (x+h)^3}{hx^3(x+h)^3} = \frac{[x - (x+h)][x^2 + x(x+h) + (x+h)^2]}{hx^3(x+h)^3} \text{ {difference of two cubes}}$$ $$= \frac{-h[x^2 + x^2 + xh + x^2 + 2xh + h^2]}{hx^3(x+h)^3} = \frac{-h(3x^2 + 3xh + h^2)}{hx^3(x+h)^3} = -\frac{3x^2 + 3xh + h^2}{x^3(x+h)^3}$$ $$\boxed{\textbf{60}} \ \frac{\frac{1}{x+h} - \frac{1}{x}}{h} = \frac{\frac{x - (x+h)}{(x+h)x}}{h} = \frac{-h}{hx(x+h)} = \frac{-1}{x(x+h)}$$ **61** The conjugate of $\sqrt{t} - 5$ is $\sqrt{t} + 5$. Multiply the numerator and the denominator by the conjugate of the denominator. This will eliminate the radical in the denominator. $$\frac{\sqrt{t+5}}{\sqrt{t-5}} = \frac{\sqrt{t+5}}{\sqrt{t-5}} \cdot \frac{\sqrt{t+5}}{\sqrt{t+5}} = \frac{\left(\sqrt{t}\right)^2 + 2 \cdot 5\sqrt{t+5}^2}{\left(\sqrt{t}\right)^2 - 5^2} = \frac{t+10\sqrt{t+25}}{t-25}$$ $$\boxed{\textbf{62}} \ \frac{16x^2 - y^2}{2\sqrt{x} - \sqrt{y}} = \frac{16x^2 - y^2}{2\sqrt{x} - \sqrt{y}} \cdot \frac{2\sqrt{x} + \sqrt{y}}{2\sqrt{x} + \sqrt{y}} = \frac{(4x + y)(4x - y)\left(2\sqrt{x} + \sqrt{y}\right)}{4x - y} = (4x + y)\left(2\sqrt{x} + \sqrt{y}\right)$$ **63** We must recognize $\sqrt[3]{a} - \sqrt[3]{b}$ as the first factor of the product formula for the difference of two cubes, $x^3 - y^3 = (x - y)(x^2
+ xy + y^2)$. The second factor is then $$\left(\sqrt[3]{a}\right)^2 + \left(\sqrt[3]{a}\right)\left(\sqrt[3]{b}\right) + \left(\sqrt[3]{b}\right)^2 = \sqrt[3]{a^2} + \sqrt[3]{ab} + \sqrt[3]{b^2}.$$ $$\frac{1}{\sqrt[3]{a} - \sqrt[3]{b}} = \frac{1}{\sqrt[3]{a} - \sqrt[3]{b}} \cdot \frac{\sqrt[3]{a^2} + \sqrt[3]{ab} + \sqrt[3]{b^2}}{\sqrt[3]{a^2} + \sqrt[3]{ab} + \sqrt[3]{b^2}} = \frac{\sqrt[3]{a^2} + \sqrt[3]{ab} + \sqrt[3]{b^2}}{a - b}$$ $$\boxed{\textbf{64}} \ \frac{1}{\sqrt[3]{x} + \sqrt[3]{y}} = \frac{1}{\sqrt[3]{x} + \sqrt[3]{y}} \cdot \frac{\sqrt[3]{x^2} - \sqrt[3]{xy} + \sqrt[3]{y^2}}{\sqrt[3]{x^2} - \sqrt[3]{xy} + \sqrt[3]{y^2}} = \frac{\sqrt[3]{x^2} - \sqrt[3]{xy} + \sqrt[3]{y^2}}{x + y}$$ $$\boxed{\textbf{65}} \ \frac{\sqrt{a} - \sqrt{b}}{a^2 - b^2} = \frac{\sqrt{a} - \sqrt{b}}{a^2 - b^2} \cdot \frac{\sqrt{a} + \sqrt{b}}{\sqrt{a} + \sqrt{b}} = \frac{a - b}{(a + b)(a - b)\left(\sqrt{a} + \sqrt{b}\right)} = \frac{1}{(a + b)\left(\sqrt{a} + \sqrt{b}\right)}$$ $$\boxed{\textbf{66}} \ \frac{\sqrt{b} + \sqrt{c}}{b^2 - c^2} = \frac{\sqrt{b} + \sqrt{c}}{b^2 - c^2} \cdot \frac{\sqrt{b} - \sqrt{c}}{\sqrt{b} - \sqrt{c}} = \frac{b - c}{(b + c)(b - c)\left(\sqrt{b} - \sqrt{c}\right)} = \frac{1}{(b + c)\left(\sqrt{b} - \sqrt{c}\right)}$$ $$\begin{array}{l} \boxed{\textbf{67}} \ \frac{\sqrt{2(x+h)+1}-\sqrt{2x+1}}{h} = \frac{\sqrt{2(x+h)+1}-\sqrt{2x+1}}{h} \cdot \frac{\sqrt{2(x+h)+1}+\sqrt{2x+1}}{\sqrt{2(x+h)+1}+\sqrt{2x+1}} \\ = \frac{(2x+2h+1)-(2x+1)}{h(\sqrt{2(x+h)+1}+\sqrt{2x+1})} \\ = \frac{2h}{h(\sqrt{2(x+h)+1}+\sqrt{2x+1})} = \frac{2}{\sqrt{2(x+h)+1}+\sqrt{2x+1}} \\ \boxed{\textbf{68}} \ \frac{\sqrt{x}-\sqrt{x+h}}{\sqrt{x}-\sqrt{x+h}} = \frac{\sqrt{x}-\sqrt{x+h}}{\sqrt{x}-\sqrt{x+h}} \cdot \frac{\sqrt{x}+\sqrt{x+h}}{\sqrt{x}-\sqrt{x+h}} = \frac{x-(x+h)}{\sqrt{x}-\sqrt{x+h}} \end{array}$$ $$\frac{\sqrt{x} - \sqrt{x+h}}{h\sqrt{x}\sqrt{x+h}} = \frac{\sqrt{x} - \sqrt{x+h}}{h\sqrt{x}\sqrt{x+h}} \cdot \frac{\sqrt{x} + \sqrt{x+h}}{\sqrt{x} + \sqrt{x+h}} = \frac{x - (x+h)}{h\sqrt{x}\sqrt{x+h}\left(\sqrt{x} + \sqrt{x+h}\right)}$$ $$= \frac{-h}{h\sqrt{x}\sqrt{x+h}\left(\sqrt{x} + \sqrt{x+h}\right)} = \frac{-1}{\sqrt{x}\sqrt{x+h}\left(\sqrt{x} + \sqrt{x+h}\right)}$$ $$\boxed{\textbf{69}} \ \frac{3x^2 - x + 7}{x^{2/3}} = \frac{3x^2}{x^{2/3}} - \frac{x}{x^{2/3}} + \frac{7}{x^{2/3}} = 3x^{4/3} - x^{1/3} + 7x^{-2/3}$$ $$\boxed{70} \ \frac{x^2 + 4x - 6}{\sqrt{x}} = \frac{x^2}{\sqrt{x}} + \frac{4x}{\sqrt{x}} - \frac{6}{\sqrt{x}} = x^{3/2} + 4x^{1/2} - 6x^{-1/2}$$ $$\boxed{\textbf{71}} \ \frac{\left(x^2+2\right)^2}{x^5} = \frac{x^4+4x^2+4}{x^5} = \frac{x^4}{x^5} + \frac{4x^2}{x^5} + \frac{4}{x^5} = x^{-1} + 4x^{-3} + 4x^{-5}$$ $$\boxed{72} \frac{\left(\sqrt{x}-3\right)^2}{x^3} = \frac{x-6\sqrt{x}+9}{x^3} = \frac{x}{x^3} - \frac{6\sqrt{x}}{x^3} + \frac{9}{x^3} = x^{-2} - 6x^{-5/2} + 9x^{-3}$$ **Note:** You may wish to demonstrate the three techniques shown in Example 7 with one of these simpler expressions in Exercises 73–76. **Note:** Exercises 73–90 are worked using the factoring concept given as the third method of simplification in Example 7. **73** The smallest exponent that appears on the variable x is -3. $$x^{-3} + x^2 \left\{ \text{factor out } x^{-3} \right\} \ = x^{-3} \left(1 + x^{2 - (-3)} \right) = x^{-3} \left(1 + x^5 \right) = \frac{1 + x^5}{x^3}$$ **74** $$x^{-5} - x$$ {factor out x^{-5} } = $x^{-5} (1 - x^{1-(-5)}) = x^{-5} (1 - x^6) = \frac{1 - x^6}{x^5}$ $$\boxed{\textbf{75}} \; x^{-1/2} - x^{3/2} \; \{ \text{factor out } x^{-1/2} \} = x^{-1/2} \left(1 - x^{3/2 - (-1/2)} \right) = x^{-1/2} (1 - x^2) = \frac{1 - x^2}{x^{1/2}} x^2$$ $$\boxed{76} \ x^{-2/3} + x^{7/3} \ \{\text{factor out } x^{-2/3}\} = x^{-2/3} \left(1 + x^{7/3 - (-2/3)}\right) = x^{-2/3} (1 + x^3) = \frac{1 + x^3}{x^{2/3}}$$ $$\begin{array}{l} \boxed{77} \ \left(2x^2 - 3x + 1\right)(4)(3x + 2)^3(3) + \left(3x + 2\right)^4(4x - 3) \\ = \left(3x + 2\right)^3 \left[12\left(2x^2 - 3x + 1\right) + \left(3x + 2\right)(4x - 3)\right] \ \left\{\text{factor out the gcf of } (3x + 2)^3\right\} \\ = \left(3x + 2\right)^3 \left(24x^2 - 36x + 12 + 12x^2 - x - 6\right) \\ = \left(3x + 2\right)^3 \left(36x^2 - 37x + 6\right) \end{aligned}$$ $$\begin{array}{l} \boxed{\textbf{78}} \ (6x-5)^3(2)\big(x^2+4\big)(2x)+\big(x^2+4\big)^2(3)(6x-5)^2(6) = 2(6x-5)^2\big(x^2+4\big)\big[2x(6x-5)+9\big(x^2+4\big)\big] \\ = 2(6x-5)^2\big(x^2+4\big)\big(12x^2-10x+9x^2+36\big) \\ = 2\big(x^2+4\big)(6x-5)^2\big(21x^2-10x+36\big) \end{array}$$ **79** The smallest exponent that appears on the factor $(x^2 - 4)$ is $-\frac{1}{2}$ and the smallest exponent that appears on the factor (2x + 1) is 2. Thus, we will factor out $(x^2 - 4)^{-1/2}(2x + 1)^2$. $$(x^{2} - 4)^{1/2}(3)(2x + 1)^{2}(2) + (2x + 1)^{3} \left(\frac{1}{2}\right)(x^{2} - 4)^{-1/2}(2x) = (x^{2} - 4)^{-1/2}(2x + 1)^{2}[6(x^{2} - 4) + x(2x + 1)]$$ If you are unsure of this factoring, it is easy to visually check at this stage by merely multiplying the expression—that is, we mentally add the exponents on the factor $(x^2 - 4)$, $-\frac{1}{2}$ and 1, and we get $\frac{1}{2}$, which is the exponent we started with. Proceeding: $$(x^2 - 4)^{-1/2}(2x + 1)^2[6(x^2 - 4) + x(2x + 1)] = (x^2 - 4)^{-1/2}(2x + 1)^2(6x^2 - 24 + 2x^2 + x)$$ $$= \frac{(2x + 1)^2(8x^2 + x - 24)}{(x^2 - 4)^{1/2}}$$ $$\begin{array}{l} \color{red} {\bf 80} \ (3x+2)^{1/3}(2)(4x-5)(4) + (4x-5)^2 \bigg(\frac{1}{3}\bigg)(3x+2)^{-2/3}(3) = (3x+2)^{-2/3}(4x-5)[8(3x+2)+(4x-5)] \\ = \frac{(4x-5)(28x+11)}{(3x+2)^{2/3}} \end{array}$$ $$\begin{array}{l} \boxed{\textbf{81}} \ (3x+1)^6 \left(\frac{1}{2}\right) (2x-5)^{-1/2} (2) + (2x-5)^{1/2} (6) (3x+1)^5 (3) \\ &= (3x+1)^5 (2x-5)^{-1/2} [(3x+1) + 18(2x-5)] \qquad \left\{ \text{factor out } (3x+1)^5 (2x-5)^{-1/2} \right\} \\ &= \frac{(3x+1)^5 (3x+1+36x-90)}{(2x-5)^{1/2}} = \frac{(3x+1)^5 (39x-89)}{(2x-5)^{1/2}} \\ \end{array}$$ $$\begin{array}{l} \color{red} \boxed{\textbf{82}} \ \left(x^2+9\right)^4 \left(-\frac{1}{3}\right) (x+6)^{-4/3} + (x+6)^{-1/3} (4) \left(x^2+9\right)^3 (2x) \\ = \left(\frac{1}{3}\right) \left(x^2+9\right)^3 (x+6)^{-4/3} \left[-\left(x^2+9\right) + 24x(x+6)\right] = \frac{\left(x^2+9\right)^3 (23x^2+144x-9)}{3(x+6)^{4/3}} \end{array}$$ $$\frac{(6x+1)^3(27x^2+2) - (9x^3+2x)(3)(6x+1)^2(6)}{(6x+1)^6} = \frac{(6x+1)^2[(6x+1)(27x^2+2) - 18(9x^3+2x)]}{(6x+1)^6}$$ $$= \frac{(6x+1)^2(162x^3+27x^2+12x+2-162x^3-36x)}{(6x+1)^6}$$ $$= \frac{27x^2 - 24x + 2}{(6x+1)^4}$$ $$\boxed{\textbf{84}} \ \frac{\left(x^2-1\right)^4(2x)-x^2(4)\left(x^2-1\right)^3(2x)}{\left(x^2-1\right)^8} = \frac{\left(2x\right)\left(x^2-1\right)^3\left[\left(x^2-1\right)-4x^2\right]}{\left(x^2-1\right)^8} = \frac{2x(-3x^2-1)}{\left(x^2-1\right)^5} = \frac{-2x(3x^2+1)}{\left(x^2-1\right)^5}$$ $$\frac{(x^2+2)^3(2x) - x^2(3)(x^2+2)^2(2x)}{\left[(x^2+2)^3\right]^2} = \frac{(x^2+2)^2(2x)\left[(x^2+2)^1 - x^2(3)\right]}{(x^2+2)^6} = \frac{2x(x^2+2-3x^2)}{(x^2+2)^4} = \frac{2x(2-2x^2)}{(x^2+2)^4} = \frac{4x(1-x^2)}{(x^2+2)^4}$$ $$\frac{(x^2 - 5)^4 (3x^2) - x^3 (4)(x^2 - 5)^3 (2x)}{\left[(x^2 - 5)^4\right]^2} = \frac{(x^2 - 5)^3 (x^2) \left[(x^2 - 5)^1 (3) - (x)(4)(2x)\right]}{(x^2 - 5)^8} = \frac{x^2 (3x^2 - 15 - 8x^2)}{(x^2 - 5)^5} = \frac{x^2 (-5x^2 - 15)}{(x^2 - 5)^5} = -\frac{5x^2 (x^2 + 3)}{(x^2 - 5)^5}$$ $$\frac{(x^2+4)^{1/3}(3)-(3x)(\frac{1}{3})(x^2+4)^{-2/3}(2x)}{\left[(x^2+4)^{1/3}\right]^2} = \frac{(x^2+4)^{-2/3}[3(x^2+4)-2x^2]}{(x^2+4)^{2/3}} = \frac{3x^2+12-2x^2}{(x^2+4)^{4/3}} = \frac{x^2+12}{(x^2+4)^{4/3}} \frac{x^2+12}{(x^2+4)^{4/3$$ $$\frac{(1-x^2)^{1/2}(2x)-x^2\left(\frac{1}{2}\right)(1-x^2)^{-1/2}(-2x)}{\left[(1-x^2)^{1/2}\right]^2} = \frac{x(1-x^2)^{-1/2}[2(1-x^2)+x^2]}{\left(1-x^2\right)^1} = \frac{x(2-2x^2+x^2)}{\left(1-x^2\right)^{3/2}} = \frac{x(2-x^2)^{-1/2}}{\left(1-x^2\right)^{3/2}} \frac{x(2-x^2)^{-1/2}}{$$ $$\frac{(4x^2+9)^{1/2}(2)-(2x+3)\left(\frac{1}{2}\right)(4x^2+9)^{-1/2}(8x)}{\left[(4x^2+9)^{1/2}\right]^2} = \frac{(4x^2+9)^{-1/2}[2(4x^2+9)-4x(2x+3)]}{(4x^2+9)^1}$$ $$= \frac{8x^2+18-8x^2-12x}{(4x^2+9)^{3/2}} = \frac{18-12x}{(4x^2+9)^{3/2}} = \frac{6(3-2x)}{(4x^2+9)^{3/2}}$$ $$\frac{(3x+2)^{1/2} \left(\frac{1}{3}\right) (2x+3)^{-2/3} (2) - (2x+3)^{1/3} \left(\frac{1}{2}\right) (3x+2)^{-1/2} (3)}{\left[(3x+2)^{1/2} \right]^2}$$ $$= \frac{\left(\frac{1}{3}\right) \left(\frac{1}{2}\right) (3x+2)^{-1/2} (2x+3)^{-2/3} [4(3x+2) - 9(2x+3)]}{(3x+2)^1}$$ $$= \frac{\left(\frac{1}{6}\right) (12x+8-18x-27)}{(3x+2)^{3/2} (2x+3)^{2/3}} = \frac{\left(\frac{1}{6}\right) (-6x-19)}{(3x+2)^{3/2} (2x+3)^{2/3}} = -\frac{6x+19}{6(3x+2)^{3/2} (2x+3)^{2/3}}$$ $$\boxed{\textbf{91}} \text{ Table Y}_1 = \frac{113x^3 + 280x^2 - 150x}{22x^3 + 77x^2 - 100x - 350} \text{ and Y}_2 = \frac{3x}{2x+7} + \frac{4x^2}{1.1x^2 - 5}.$$ | x | \mathbf{Y}_{1} | Y_2 | |---|------------------|---------| | 1 | -0.6923 | -0.6923 | | 2 | -26.12 | -26.12 | | 3 | 8.0392 | 8.0392 | | 4 | 5.8794 | 5.8794 | | 5 | 5.3268 | 5.3268 | The values for Y_1 and Y_2 agree. Therefore, the two expressions might be equal. **92** Table $$Y_1 = \frac{20x^2 + 41x + 31}{10x^3 + 10x^2}$$ and $Y_2 = \frac{1}{x} + \frac{1}{x+1} + \frac{3.2}{x^2}$. | x | Y ₁ | Y ₂ | |---|----------------|----------------| | 1 | 4.6 | 4.7 | | 2 | 1.6083 | 1.6333 | | 3 | 0.92778 | 0.93889 | | 4 | 0.64375 | 0.65 | | 5 | 0.49067 | 0.49467 | The values for Y_1 and Y_2 do not agree. Therefore, the two expressions are not equal. **93** In the second figure, the dimensions of area I are (x) and (x-y). The area of I is (x-y)x, and the area of II is (x-y)y. The area $A = \frac{x^2 - y^2}{(x-y)x + (x-y)y}$ {in the second figure} = (x-y)(x+y). {in the third figure} **94** Volume of I is $x^2(x-y)$, volume of II is xy(x-y), and volume of III is $y^2(x-y)$. $$V = x^3 - y^3 = x^2(x - y) + xy(x - y) + y^2(x - y) = (x - y)(x^2 + xy + y^2).$$ **95** (a) For the 25-year-old female, use $$C_f = 66.5 + 13.8w + 5h - 6.8y$$ with $w = 59$, $h = 163$, and $y = 25$. $$C_f = 66.5 + 13.8(59) + 5(163) - 6.8(25) = 1525.7$$ calories For the 55-year-old male, use $$C_m = 655 + 9.6w + 1.9h - 4.7y$$
with $w = 75$, $h = 178$, and $y = 55$. $$C_m = 655 + 9.6(75) + 1.9(178) - 4.7(55) = 1454.7$$ calories (b) As people age they require fewer calories. The coefficients of w and h are positive because large people require more calories. #### 1.4 Exercises $$\boxed{1}$$ $4x - 3 = -5x + 6 \Rightarrow 4x + 5x = 6 + 3 \Rightarrow 9x = 9 \Rightarrow x = 1$ $$\boxed{2}$$ $5x - 4 = 2(x - 2) \Rightarrow 5x - 4 = 2x - 4 \Rightarrow 3x = 0 \Rightarrow x = 0$ $$(3x-2)^2 = (x-5)(9x+4) \quad \Rightarrow \quad 9x^2 - 12x + 4 = 9x^2 - 41x - 20 \quad \Rightarrow \quad 29x = -24 \quad \Rightarrow \quad x = -\frac{24}{29}$$ $$\boxed{4} \quad (x+5)^2 + 3 = (x-2)^2 \quad \Rightarrow \quad x^2 + 10x + 25 + 3 = x^2 - 4x + 4 \quad \Rightarrow \quad 14x = -24 \quad \Rightarrow \quad x = -\frac{12}{7}$$ $$\boxed{\mathbf{5}} \quad \left[\frac{3x+1}{6x-2} = \frac{2x+5}{4x-13} \right] \cdot (6x-2)(4x-13) \quad \Rightarrow \quad (3x+1)(4x-13) = (2x+5)(6x-2) (2x+5)(4x-14)(4x-14) = (2x+5)(4x-14)(4x-14) \quad \Rightarrow \quad (3x+1)(4x-14$$ $$12x^2 - 35x - 13 = 12x^2 + 26x - 10 \quad \Rightarrow \quad -3 = 61x \quad \Rightarrow \quad x = -\frac{3}{61} \left\{ \text{note that } x \neq \frac{1}{3}, \frac{13}{4} \right\}$$ $$\boxed{\mathbf{6}} \quad \left[\frac{7x+2}{14x-3} = \frac{x-8}{2x+3} \right] \cdot (14x-3)(2x+3) \quad \Rightarrow \quad (7x+2)(2x+3) = (x-8)(14x-3) (x-8)(2x+3) (x-2)(2x+3) \quad \Rightarrow \quad (7x+2)(2x+3)(2x+3) \quad \Rightarrow \quad (7x+2)(2x+3)(2x+3) \quad \Rightarrow \quad (7x+2)(2x+3)(2x+3)(2x+3) \quad \Rightarrow \quad (7x+2)(2$$ $$14x^2 + 25x + 6 = 14x^2 - 115x + 24 \implies 140x = 18 \implies x = \frac{9}{70}$$ $$\boxed{7} \quad \left[\frac{4}{x+2} + \frac{1}{x-2} = \frac{5x-6}{x^2-4} \right] \cdot (x+2)(x-2) \quad \Rightarrow \quad 4(x-2) + 1(x+2) = 5x-6 \quad \Rightarrow$$ $$4x - 8 + x + 2 = 5x - 6$$ \Rightarrow $5x - 6 = 5x - 6$ {or $0 = 0$ }, indicating an identity. The solution is $\mathbb{R} - \{\pm 2\}$. $$\boxed{\textbf{8}} \quad \left[\frac{2}{2x+5} + \frac{3}{2x-5} = \frac{10x+5}{4x^2-25} \right] \cdot (2x+5)(2x-5) \quad \Rightarrow \quad 2(2x-5) + 3(2x+5) = 10x+5 3$$ $$4x - 10 + 6x + 15 = 10x + 5 \implies 10x + 5 = 10x + 5 \text{ {or } } 0 = 0 \text{}, \text{ indicating an identity.}$$ The solution is $\mathbb{R} - \{\pm \frac{5}{2}\}$. $$\boxed{9} \quad \left[\frac{5}{2x+3} + \frac{4}{2x-3} = \frac{14x+3}{4x^2-9} \right] \cdot (2x+3)(2x-3) \quad \Rightarrow \quad 5(2x-3) + 4(2x+3) = 14x+3 \quad \Rightarrow \quad 10x-15+8x+12 = 14x+3 \quad \Rightarrow \quad 18x-3 = 14x+3 \quad \Rightarrow \quad 4x=6 \quad$$ $x=\frac{3}{2}$, which is not in the domain of the given expressions. **No solution** $$\boxed{10} \left[\frac{-3}{x+4} + \frac{7}{x-4} = \frac{-5x+4}{x^2-16} \right] \cdot (x+4)(x-4) \quad \Rightarrow \quad -3(x-4) + 7(x+4) = -5x+4 \quad \Rightarrow \quad -3x+12+7x+28 = -5x+4 \quad \Rightarrow \quad 4x+40 = -5x+4 \quad \Rightarrow \quad 9x = -36 \quad \Rightarrow$$ x = -4, which is not in the domain of the given expressions. **No solution** 11 Divide both sides by a nonzero constant whenever possible. In this case, 5 divides evenly into both sides. $$75x^2 + 35x - 10 = 0$$ {divide by 5} $\Rightarrow 15x^2 + 7x - 2 = 0$ {factor} \Rightarrow $$(3x+2)(5x-1) = 0$$ {zero factor theorem} $\Rightarrow x = -\frac{2}{3}, \frac{1}{5}$ **12** $$48x^2 + 12x - 90 = 0$$ {divide by 6} $\Rightarrow 8x^2 + 2x - 15 = 0 \Rightarrow (2x+3)(4x-5) = 0 \Rightarrow x = -\frac{3}{2}, \frac{5}{4}$ **13** Here, the lcd is x(x+3) and we need to remember that $x \neq 0, -3$. $$\left[\frac{x}{x+3} + \frac{1}{x} - 4 = \frac{9}{x^2 + 3x}\right] \cdot x(x+3) \quad \Rightarrow \quad x(x) + 1(x+3) - 4(x^2 + 3x) = 9 \quad \Rightarrow$$ $$x^{2} + x + 3 - 4x^{2} - 12x = 9 \implies 0 = 3x^{2} + 11x + 6 \implies (3x + 2)(x + 3) = 0 \implies$$ $x = -\frac{2}{3} \left\{ -3 \text{ is not in the domain of the given expressions} \right\}$ $$\boxed{14} \left[\frac{3x}{x-2} + \frac{1}{x+2} = \frac{-4}{x^2 - 4} \right] \cdot (x+2)(x-2) \quad \Rightarrow \quad 3x(x+2) + 1(x-2) = -4 \quad \Rightarrow$$ $$3x^2 + 6x + x - 2 = -4 \implies 3x^2 + 7x + 2 = 0 \implies (3x+1)(x+2) = 0 \implies$$ $x = -\frac{1}{3} \left\{ -2 \text{ is not in the domain of the given expressions} \right\}$ **15** $$25x^2 = 9$$ \Rightarrow $x^2 = \frac{9}{25}$ \Rightarrow $x = \pm \sqrt{\frac{9}{25}}$ \Rightarrow $x = \pm \frac{3}{5}$ **16** $$64x^2 = 49 \quad \Rightarrow \quad x^2 = \frac{49}{64} \quad \Rightarrow \quad x = \pm \sqrt{\frac{49}{64}} \quad \Rightarrow \quad x = \pm \frac{7}{8}$$ **17** $$(x-3)^2 = 17 \implies x-3 = \pm \sqrt{17} \implies x = 3 \pm \sqrt{17}$$ **18** $$(x+5)^2 = 29 \implies x+5 = \pm \sqrt{29} \implies x = -5 \pm \sqrt{29}$$ **19** $$x^2 + 6x + 3 = 0$$ $\Rightarrow x = \frac{-6 \pm \sqrt{36 - 12}}{2(1)} = \frac{-6 \pm \sqrt{24}}{2} = \frac{-6 \pm 2\sqrt{6}}{2} = -3 \pm \sqrt{6}$ **20** $$x^2 - 4x - 2 = 0$$ \Rightarrow $x = \frac{4 \pm \sqrt{16 + 8}}{2(1)} = \frac{4 \pm \sqrt{24}}{2} = \frac{4 \pm 2\sqrt{6}}{2} = 2 \pm \sqrt{6}$ $$2x^{2} - 3x - 4 = 0 \implies x = \frac{-(-3) \pm \sqrt{(-3)^{2} - 4(2)(-4)}}{2(2)} = \frac{3 \pm \sqrt{9 + 32}}{4} = \frac{3}{4} \pm \frac{1}{4}\sqrt{41}$$ **22** $$3x^2 + 5x + 1 = 0 \implies x = \frac{-5 \pm \sqrt{5^2 - 4(3)(1)}}{2(3)} = \frac{-5 \pm \sqrt{25 - 12}}{6} = -\frac{5}{6} \pm \frac{1}{6}\sqrt{13}$$ **23** The expression is $x^2 + x - 30$. The associated quadratic equation is $x^2 + x - 30 = 0$. Using the quadratic formula, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$, to solve for x with a = 1, b = 1, and c = -30 gives us: $$x = \frac{-1 \pm \sqrt{1^2 - 4(1)(-30)}}{2(1)} = \frac{-1 \pm \sqrt{1 + 120}}{2} = \frac{-1 \pm \sqrt{121}}{2} = \frac{-1 \pm 11}{2} = \frac{10}{2}, \frac{-12}{2} = 5, -6$$ Write the equation as a product of linear factors: [x - (5)][x - (-6)] = 0 Now simplify: (x-5)(x+6) = 0 So the final factored form of $x^2 + x - 30$ is (x - 5)(x + 6). **24** $$x^2 - 11x = 0$$ { $a = 1, b = -11, c = 0$ }, so $x = \frac{11 \pm \sqrt{121 - 0}}{2} = \frac{11 \pm 11}{2} = 11, 0.$ Thus, $x^2 - 11x = (x - 11)(x - 0) = x(x - 11).$ **25** $$12x^2 - 16x - 3 = 0$$ $\{a = 12, b = -16, c = -3\}$, so $x = \frac{16 \pm \sqrt{256 + 144}}{24} = \frac{16 \pm 20}{24} = \frac{3}{2}, -\frac{1}{6}$. Write the equation as a product of linear factors: $\left[x-\left(\frac{3}{2}\right)\right]\left[x-\left(-\frac{1}{6}\right)\right]=0$ Now multiply the first factor by 2 and the second factor by 6. (2x-3)(6x+1)=0 So the final factored form of $12x^2 - 16x - 3$ is (2x - 3)(6x + 1). **26** $$15x^2 + 34x - 16 = 0$$ $\{a = 15, b = 34, c = -16\}$, so $x = \frac{-34 \pm \sqrt{1156 + 960}}{30} = \frac{-34 \pm 46}{30} = \frac{2}{5}, -\frac{8}{3}$. Thus, $15x^2 + 34x - 16 = 5\left[x - \left(\frac{2}{5}\right)\right] \cdot 3\left[x - \left(-\frac{8}{3}\right)\right] = (5x - 2)(3x + 8)$. $$\boxed{\textbf{27}} \ x^2 - 8x + 11 = 0 \ \{a = 1, b = -8, c = 11\}, \text{ so } x = \frac{8 \pm \sqrt{64 - 44}}{2} = \frac{8 \pm \sqrt{20}}{2} = \frac{8 \pm 2\sqrt{5}}{2} = 4 \pm \sqrt{5}.$$ So a factored form of $x^2 - 8x + 11$ is $\left[x - \left(4 + \sqrt{5}\right)\right] \left[x - \left(4 - \sqrt{5}\right)\right]$, or $\left[x - 4 - \sqrt{5}\right] \left[x - 4 + \sqrt{5}\right]$. **28** $$x^2 + 6x + 2 = 0$$ { $a = 1, b = 6, c = 2$ }, so $x = \frac{-6 \pm \sqrt{36 - 8}}{2} = \frac{-6 \pm \sqrt{28}}{2} = \frac{-6 \pm 2\sqrt{7}}{2} = -3 \pm \sqrt{7}$. So a factored form of $x^2 + 6x + 2$ is $\left[x - \left(-3 + \sqrt{7}\right)\right] \left[x - \left(-3 - \sqrt{7}\right)\right]$, or $\left[x + 3 - \sqrt{7}\right] \left[x + 3 + \sqrt{7}\right]$. **29** $$3x^2 + 5x - 7 = 0$$ $\{a = 3, b = 5, c = -7\}$, so $x = \frac{-5 \pm \sqrt{25 + 84}}{6} = \frac{1}{6} \left(-5 \pm \sqrt{109}\right)$. So a factored form of $3x^2 + 5x - 7$ is $3\left[x - \frac{1}{6}\left(-5 + \sqrt{109}\right)\right]\left[x - \frac{1}{6}\left(-5 - \sqrt{109}\right)\right]$ $$\begin{array}{l} \boxed{\textbf{30}} \ 2x^2 - 7x + 4 = 0 \ \{a = 2, b = -7, c = 4\}, \ \text{so} \ x = \frac{7 \pm \sqrt{49 - 32}}{4} = \frac{1}{4} \Big(7 \pm \sqrt{17}\Big). \\ \text{So a factored form of} \ 2x^2 - 7x + 4 \ \text{is} \ 2\Big[x - \frac{1}{4}\Big(7 + \sqrt{17}\Big)\Big] \Big[x - \frac{1}{4}\Big(7 - \sqrt{17}\Big)\Big]. \\ \end{array}$$ $$|3x-2|+3=7 \quad \Rightarrow \quad |3x-2|=4 \quad \Rightarrow \quad 3x-2=4 \text{ or } 3x-2=-4 \quad \Rightarrow \quad$$ $$3x = 6 \text{ or } 3x = -2 \implies x = 2 \text{ or } x = -\frac{2}{3}$$ **32** $$2|5x+2|-1=5 \Rightarrow 2|5x+2|=6 \Rightarrow |5x+2|=3 \Rightarrow$$ $$5x + 2 = 3 \text{ or } 5x + 2 = -3 \implies 5x = 1 \text{ or } 5x = -5 \implies x = \frac{1}{5} \text{ or } x = -1$$ **33** $$3|x+1|-5=-11 \Rightarrow 3|x+1|=-6 \Rightarrow |x+1|=-2.$$ Since the absolute value of an expression is nonnegative, |x+1| = -2 has no solution. $$|x-3|+6=6 \Rightarrow |x-3|=0$$. Since the absolute value of an expression can only equal 0 if the expression itself is $0, |x-3| = 0 \implies x-3 = 0 \implies x = 3$. #### **35** Since there are four terms, we first try factoring by grouping. $$9x^3 - 18x^2 - 4x + 8 = 0 \implies 9x^2(x-2) - 4(x-2) = 0 \implies$$ $$(9x^2-4)(x-2)=0 \implies x^2=\frac{4}{9} \text{ or } x=2 \implies x=\pm\frac{2}{3},2$$ **36** $$3x^3 - 5x^2 - 12x + 20 = 0 \implies x^2(3x - 5) - 4(3x - 5) = 0 \implies (x^2 - 4)(3x - 5) = 0 \implies x = \pm 2, \frac{5}{3}$$ #### $\boxed{37}$ Notice that we can factor an x out of each term, and then factor by grouping. $$4x^4 + 10x^3 = 6x^2 + 15x \implies 4x^4 + 10x^3 - 6x^2 - 15x = 0 \implies x(4x^3 + 10x^2 - 6x - 15) = 0 \implies x[2x^2(2x+5) - 3(2x+5)] = 0 \implies x(2x^2 - 3)(2x+5)
= 0 \implies$$ $$x = 0 \text{ or } x^2 = \frac{3}{2} \text{ or } x = -\frac{5}{2} \implies x = 0, \pm \frac{1}{2} \sqrt{6}, -\frac{5}{2}$$ **Note:** $$x^2 = \frac{3}{2} \implies x = \pm \sqrt{\frac{3}{2}} = \pm \frac{\sqrt{3}}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \pm \frac{\sqrt{6}}{2} = \pm \frac{1}{2} \sqrt{6}$$. There are several ways to write this answer—your professor may have a preference. **38** $$15x^5 - 20x^4 = 6x^3 - 8x^2 \implies x^2(15x^3 - 20x^2 - 6x + 8) = 0 \implies$$ $$x^2 \left[5x^2 (3x - 4) - 2(3x - 4) \right] = 0 \quad \Rightarrow \quad x^2 (5x^2 - 2)(3x - 4) = 0 \quad \Rightarrow \quad x = 0, \pm \frac{1}{5} \sqrt{10}, \frac{4}{3} \frac{4}{3$$ **39** $$y^{3/2} = 5y \implies y^{3/2} - 5y = 0 \implies y(y^{1/2} - 5) = 0 \implies y = 0 \text{ or } y^{1/2} = 5.$$ $y^{1/2} = 5 \implies (y^{1/2})^2 = 5^2 \implies y = 25$. The solutions y = 0 and y = 25 both check in the original equation. $$\boxed{\textbf{40}} \ y^{4/3} = -4y \quad \Rightarrow \quad y^{4/3} + 4y = 0 \quad \Rightarrow \quad y(y^{1/3} + 4) = 0 \quad \Rightarrow \quad y = 0 \text{ or } y^{1/3} = -4. \ y^{1/3} = -4.$$ $(y^{1/3})^3 = (-4)^3 \implies y = -64$. The solutions y = 0 and y = -64 both check in the original equation. $$\boxed{\textbf{41}} \ x^{5/3} = 4x \quad \Rightarrow \quad x^{5/3} - 4x = 0 \quad \Rightarrow \quad x \big(x^{2/3} - 4 \big) = 0 \quad \Rightarrow \quad x = 0 \text{ or } x^{2/3} = 4.$$ $$x^{2/3} = 4 \implies x = \pm 4^{3/2}$$ {see the last illustration on page 51} $\Rightarrow x = \pm \left(\sqrt{4}\right)^3 \Rightarrow x = \pm 8$. The three solutions x = 0 and $x = \pm 8$ all check in the original equation. **[42]** $$x^{5/2} = -27x \implies x^{5/2} + 27x = 0 \implies x(x^{3/2} + 27) = 0 \implies x = 0 \text{ or } x^{3/2} = -27.$$ $$x^{3/2} = -27 \implies (x^{3/2})^{2/3} = (-27)^{2/3} \implies x = (\sqrt[3]{-27})^2 \implies x = 9.$$ Only the solution x = 0 checks in the original equation. **Note:** The following guidelines may be helpful when solving radical equations. #### Guidelines for Solving a Radical Equation - (1) Isolate the radical. If we cannot get the radical isolated on one side of the equals sign because there is more than one radical, then we will split up the radical terms as evenly as possible on each side of the equals sign. For example, if there are two radicals, we put one on each side; if there are three radicals, we put two on one side and one on the other. - (2) Raise both sides to the same power as the root index. **Note:** Remember here that $$\left(a + b\sqrt{n}\right)^2 = a^2 + 2ab\sqrt{n} + b^2n$$ and that $(a+b\sqrt{n})^2$ is **not** a^2+b^2n . - (3) If your equation contains no radicals, proceed to part (4). If there are still radicals in the equation, go back to part (1). - (4) Solve the resulting equation. - (5) Check the answers found in part (4) in the original equation to determine the valid solutions. **Note:** You may check the solutions in any equivalent equation of the original equation, that is, an equation which occurs prior to raising both sides to a power. Also, extraneous real number solutions are introduced when raising both sides to an even power. Hence, all solutions *must* be checked in this case. Checking solutions when raising each side to an odd power is up to the individual professor. **43** $$\sqrt{7-5x} = 8 \implies \left(\sqrt{7-5x}\right)^2 = 8^2 \implies 7-5x = 64 \implies -57 = 5x \implies x = -\frac{57}{5}$$ $$\boxed{44} \sqrt{3-x} - x = 3 \quad \Rightarrow \quad \left(\sqrt{3-x}\right)^2 = (x+3)^2 \quad \Rightarrow \quad 3-x = x^2 + 6x + 9 \quad \Rightarrow \quad x^2 + 7x + 6 = 0 \quad \Rightarrow \quad x = x^2 + 6x + 9 \quad \Rightarrow \quad x = x^2$$ $(x+1)(x+6) = 0 \implies x = -1 \text{ and } -6 \text{ is an extraneous solution.}$ **45** $$x = 3 + \sqrt{5x - 9}$$ \Rightarrow $x - 3 = \sqrt{5x - 9}$ \Rightarrow $x^2 - 6x + 9 = 5x - 9$ \Rightarrow $x^2 - 11x + 18 = 0 \implies (x - 2)(x - 9) = 0 \implies x = 9$ and 2 is an extraneous solution. **46** $$x + \sqrt{5x + 19} = -1 \implies \sqrt{5x + 19} = -x - 1 \implies 5x + 19 = x^2 + 2x + 1 \implies$$ $$x^2 - 3x - 18 = 0 \Rightarrow (x - 6)(x + 3) = 0 \Rightarrow x = -3, 6.$$ Check x = -3: LS = $-3 + 2 = -1 = RS \implies x = -3$ is a solution. Check x = 6: LS = $6 + 7 = 13 \neq RS \implies x = 6$ is an extraneous solution. **Note:** Substitution could be used instead of factoring for the following exercises. **[47]** We recognize this equation as a quadratic equation in y^2 and apply the quadratic formula, solving for y^2 , not y. $$5y^4 - 7y^2 + 1.5 = 0 \quad \Rightarrow \quad y^2 = \frac{7 \pm \sqrt{19}}{10} \cdot \frac{10}{10} = \frac{70 \pm 10\sqrt{19}}{100} \quad \Rightarrow \quad y = \pm \frac{1}{10}\sqrt{70 \pm 10\sqrt{19}}$$ Alternatively, let $u = y^2$ and solve $5u^2 - 7u + 1.5 = 0$. $$\boxed{\textbf{48}} \ 3y^4 - 5y^2 + 1.5 = 0 \quad \Rightarrow \quad y^2 = \frac{5 \pm \sqrt{7}}{6} \cdot \frac{6}{6} = \frac{30 \pm 6\sqrt{7}}{36} \quad \Rightarrow \quad y = \pm \frac{1}{6} \sqrt{30 \pm 6\sqrt{7}}$$ $\boxed{\textbf{49}} \ 36x^{-4} - 13x^{-2} + 1 = 0 \quad \Rightarrow \quad (4x^{-2} - 1)(9x^{-2} - 1) = 0 \quad \Rightarrow \quad x^{-2} = \frac{1}{4}, \frac{1}{9} \quad \Rightarrow \quad x^2 = 4, 9 \quad \Rightarrow \quad x = \pm 2, \pm 3$ Alternatively, let $u = x^{-2}$ and solve $36u^2 - 13u + 1 = 0$. **50** $$x^{-2} - 2x^{-1} - 35 = 0 \implies (x^{-1} - 7)(x^{-1} + 5) = 0 \implies x^{-1} = 7, -5 \implies x = \frac{1}{7}, -\frac{1}{5}$$ Alternatively, let $u = x^{1/3}$ and solve $3u^2 + 4u - 4 = 0$. **52** $$2y^{1/3} - 3y^{1/6} + 1 = 0 \implies (2y^{1/6} - 1)(y^{1/6} - 1) = 0 \implies \sqrt[6]{y} = \frac{1}{2}, 1 \implies y = \frac{1}{64}, 1$$ **53** See the illustrations and discussion on text page 51 for help on solving equations by raising both sides to a reciprocal power. Note that if $x^{m/n}$ is in the given equation and m is even, we have to use the \pm symbol for the solutions. Here are a few more examples: # Equation Solution $x^{1/2} = 4 \qquad (x^{1/2})^{2/1} = 4^{2/1} \quad \Rightarrow \quad x = 16$ $x^{-1/2} = 5 \qquad (x^{-1/2})^{-2/1} = 5^{-2/1} \quad \Rightarrow \quad x = \frac{1}{25}$ $x^{3/4} = 8 \qquad (x^{3/4})^{4/3} = 8^{4/3} \quad \Rightarrow \quad x = 16$ $x^{4/3} = 81 \qquad (x^{4/3})^{3/4} = 81^{3/4} \quad \Rightarrow \quad x = \pm 27 \; \{ \; \pm \; \text{since 4 is even} \}$ (a) $$x^{5/3} = 32 \implies (x^{5/3})^{3/5} = (32)^{3/5} \implies x = (\sqrt[5]{32})^3 = 2^3 = 8$$ **(b)** $$x^{4/3} = 16 \Rightarrow (x^{4/3})^{3/4} = \pm (16)^{3/4} \Rightarrow x = \pm (\sqrt[4]{16})^3 = \pm 2^3 = \pm 8$$ (c)
$$x^{2/3} = -64 \implies (x^{2/3})^{3/2} = \pm (-64)^{3/2} \implies x = \pm (\sqrt{-64})^3$$, which are not real numbers. No real solutions **(d)** $$x^{3/4} = 125 \implies (x^{3/4})^{4/3} = (125)^{4/3} \implies x = (\sqrt[3]{125})^4 = 5^4 = 625$$ (e) $$x^{3/2} = -27 \implies (x^{3/2})^{2/3} = (-27)^{2/3} \implies x = (\sqrt[3]{-27})^2 = (-3)^2 = 9,$$ which is an extraneous solution. No real solutions **54** (a) $$x^{3/5} = -27 \Rightarrow (x^{3/5})^{5/3} = (-27)^{5/3} \Rightarrow x = (\sqrt[3]{-27})^5 = (-3)^5 = -243$$ **(b)** $$x^{2/3} = 25 \quad \Rightarrow \quad \left(x^{2/3}\right)^{3/2} = \pm (25)^{3/2} \quad \Rightarrow \quad x = \pm \left(\sqrt{25}\right)^3 = \pm 5^3 = \pm 125$$ (c) $$x^{4/3} = -49 \implies (x^{4/3})^{3/4} = \pm (-49)^{3/4} \implies x = \pm (\sqrt[4]{-49})^3$$, which are not real numbers. No real solutions (d) $$x^{3/2} = 64 \implies (x^{3/2})^{2/3} = (64)^{2/3} \implies x = (\sqrt[3]{64})^2 = 4^2 = 16$$ (e) $$x^{3/4} = -8 \implies (x^{3/4})^{4/3} = (-8)^{4/3} \implies x = (\sqrt[3]{-8})^4 = (-2)^4 = 16$$, which is an extraneous solution. No real solutions **[55]** (a) For this exercise, we must recognize the equation as a quadratic in x, that is, $$Ax^2 + Bx + C = 0$$ where A is the coefficient of x^2 , B is the coefficient of x, and C is the collection of all terms that do not contain x^2 or x. $$4x^{2} - 4xy + 1 - y^{2} = 0 \Rightarrow (4)x^{2} + (-4y)x + (1 - y^{2}) = 0 \Rightarrow$$ $$x = \frac{4y \pm \sqrt{16y^{2} - 16(1 - y^{2})}}{2(4)} = \frac{4y \pm \sqrt{16[y^{2} - (1 - y^{2})]}}{2(4)} = \frac{4y \pm 4\sqrt{2y^{2} - 1}}{2(4)} = \frac{y \pm \sqrt{2y^{2} - 1}}{2}$$ **(b)** Similar to part (a), we must now recognize the equation as a quadratic equation in y. $$4x^{2} - 4xy + 1 - y^{2} = 0 \Rightarrow (-1)y^{2} + (-4x)y + (4x^{2} + 1) = 0 \Rightarrow$$ $$y = \frac{4x \pm \sqrt{16x^{2} + 4(4x^{2} + 1)}}{2(-1)} = \frac{4x \pm \sqrt{4[4x^{2} + (4x^{2} + 1)]}}{-2} = \frac{4x \pm 2\sqrt{8x^{2} + 1}}{-2} = -2x \pm \sqrt{8x^{2} + 1}$$ **56** (a) $$2x^2 - xy = 3y^2 + 1 \implies (2)x^2 + (-y)x + (-3y^2 - 1) = 0 \implies x = \frac{y \pm \sqrt{y^2 - 8(-3y^2 - 1)}}{2(2)} = \frac{y \pm \sqrt{25y^2 + 8}}{4}$$ **(b)** $$2x^2 - xy = 3y^2 + 1 \implies (-3)y^2 + (-x)y + (2x^2 - 1) = 0 \implies y = \frac{x \pm \sqrt{x^2 + 12(2x^2 - 1)}}{2(-3)} = \frac{x \pm \sqrt{25x^2 - 12}}{-6}$$ **57** (a) $$x = \frac{-4,500,000 \pm \sqrt{4,500,000^2 - 4(1)(-0.96)}}{2} \approx 0 \text{ and } -4,500,000$$ **(b)** $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \cdot \frac{-b \mp \sqrt{b^2 - 4ac}}{-b \mp \sqrt{b^2 - 4ac}} = \frac{b^2 - (b^2 - 4ac)}{2a(-b \mp \sqrt{b^2 - 4ac})}$$ $$= \frac{4ac}{2a(-b \mp \sqrt{b^2 - 4ac})} = \frac{2c}{-b \mp \sqrt{b^2 - 4ac}}$$ The root near zero was obtained in part (a) using the plus sign. In the second formula, it corresponds to the minus sign. $x = \frac{2(-0.96)}{-4,500,000 - \sqrt{4,500,000^2 - 4(1)(-0.96)}} \approx 2.13 \times 10^{-7}$ **58** (a) $$x = \frac{73,000,000 \pm \sqrt{(-73,000,000)^2 - 4(1)(2.01)}}{2} \approx 73,000,000 \text{ and } 0$$ - (b) The root near zero was obtained in part (a) using the minus sign. In the second formula, it corresponds to the plus sign. $x = \frac{2(2.01)}{73,000,000 + \sqrt{(-73,000,000)^2 4(1)(2.01)}} \approx 2.75 \times 10^{-8}$ **60** $$CD + C = PC + R \Rightarrow CD + C - PC = R \Rightarrow C(D+1-P) = R \Rightarrow C = \frac{R}{D+1-P}$$ $$\boxed{\textbf{61}} \ N = \frac{Q+1}{Q} \quad \Rightarrow \quad NQ = Q+1 \quad \Rightarrow \quad NQ-Q = 1 \quad \Rightarrow \quad Q(N-1) = 1 \quad \Rightarrow \quad Q = \frac{1}{N-1}$$ $$\boxed{\textbf{62}} \ \beta = \frac{\alpha}{1-\alpha} \quad \Rightarrow \quad \beta(1-\alpha) = \alpha \quad \Rightarrow \quad \beta - \beta\alpha = \alpha \quad \Rightarrow \quad \beta = \alpha + \beta\alpha \quad \Rightarrow \quad \beta = \alpha(1+\beta) \quad \Rightarrow \quad \alpha = \frac{\beta}{1+\beta}$$ **63** $$A = P + Prt \implies A - P = Prt \implies r = \frac{A - P}{Pt}$$ **[64]** $$s = \frac{1}{2}gt^2 + v_0t \implies 2s = gt^2 + 2v_0t \implies 2s - gt^2 = 2v_0t \implies v_0 = \frac{2s - gt^2}{2t}$$ $$S = \frac{p}{q + p(1 - q)} \qquad \{ \text{given equation, solve for } q \}$$ $$S[q + p(1 - q)] = p \qquad \{ \text{eliminate the fraction} \}$$ $$Sq + Sp(1 - q) = p \qquad \{ \text{multiply terms} \}$$ $$Sq + Sp - Spq = p \qquad \{ \text{multiply terms} \}$$ $$Sq - Spq = p - Sp \qquad \{ \text{isolate terms containing } q \}$$ $$Sq(1 - p) = p(1 - S) \qquad \{ \text{factor our } Sq \}$$ $$q = \frac{p(1-S)}{S(1-p)}$$ {divide by $S(1-p)$ to solve for q } **66** $$S = 2(lw + hw + hl) \Rightarrow S = 2lw + 2hw + 2hl \Rightarrow S - 2lw = 2h(w + l) \Rightarrow h = \frac{S - 2lw}{2(w + l)}$$ $$\boxed{67} \ \frac{1}{f} = \frac{1}{p} + \frac{1}{q} \text{ \{multiply by the lcd, } fpq \} \Rightarrow$$ $$pq = fq + fp \implies pq - fq = fp \implies q(p - f) = fp \implies q = \frac{fp}{p - f}$$ $$\begin{array}{ll} \boxed{\textbf{68}} \ \frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \ \{ \text{multiply by the lcd}, RR_1R_2R_3 \} \quad \Rightarrow \quad R_1R_2R_3 = RR_2R_3 + RR_1R_3 + RR_1R_2 \quad \Rightarrow \\ R_1R_2R_3 - RR_2R_3 - RR_1R_2 = RR_1R_3 \quad \Rightarrow \quad R_2(R_1R_3 - RR_3 - RR_1) = RR_1R_3 \quad \Rightarrow \\ R_2 = \frac{RR_1R_3}{R_1R_3 - RR_3 - RR_1} \end{array}$$ $$\boxed{\textbf{69}} \ K = \frac{1}{2} m v^2 \quad \Rightarrow \quad v^2 = \frac{2K}{m} \quad \Rightarrow \quad v = \pm \sqrt{\frac{2K}{m}} \quad \Rightarrow \quad v = \sqrt{\frac{2K}{m}} \ \text{since} \ v > 0.$$ $$\boxed{\textbf{70}} \ F = g \frac{mM}{d^2} \quad \Rightarrow \quad d^2 = \frac{gmM}{F} \quad \Rightarrow \quad d = \pm \sqrt{\frac{gmM}{F}} \quad \Rightarrow \quad d = \sqrt{\frac{gmM}{F}} \ \text{since} \ d > 0.$$ $$71 A = 2\pi r(r+h) \Rightarrow A = 2\pi r^2 + 2\pi rh \Rightarrow (2\pi)r^2 + (2\pi h)r - A = 0 \text{ {a quadratic equation in } } r \Rightarrow$$ $$r = \frac{-(2\pi h) \pm \sqrt{(2\pi h)^2 - 4(2\pi)(-A)}}{2(2\pi)} = \frac{-2\pi h \pm \sqrt{4\pi^2 h^2 + 8\pi A}}{2(2\pi)}$$ $$= \frac{-2\pi h \pm 2\sqrt{\pi^2 h^2 + 2\pi A}}{2(2\pi)} = \frac{-\pi h \pm \sqrt{\pi^2 h^2 + 2\pi A}}{2\pi}$$ Since $r > 0$, we must use the plus sign, and $r = \frac{-\pi h + \sqrt{\pi^2 h^2 + 2\pi A}}{2\pi}$. $$\boxed{\textbf{72}} \ s = \frac{1}{2} g t^2 + v_0 t \quad \Rightarrow \quad \left(\frac{1}{2} g\right) t^2 + (v_0) t - s = 0 \quad \Rightarrow \quad t = \frac{-v_0 \pm \sqrt{v_0^2 + 2gs}}{g}.$$ Since t > 0, we must use the plus sign, and $t = \frac{-v_0 + \sqrt{v_0^2 + 2gs}}{s}$ 75 Let x denote the number of consecutive wins. We want $$\frac{\text{total wins}}{\text{total games played}} \geq .490, \text{ so } \frac{1503 + x}{1503 + 1575 + x} \geq .490 \quad \Rightarrow \quad 1503 + x \geq .490(3078 + x) \quad \Rightarrow \quad 1503 + x \geq 1508.22 + .490x \quad \Rightarrow \quad .510x \geq 5.22 \quad \Rightarrow \quad x \geq \frac{5.22}{.510} \left[\approx 10.2 \right], \text{ so } x = 11.$$ We usually use the notation 0.490, but baseball statistics usually use .490, so we omitted the preceding zeros. - **76** Let x denote the maximum height of the grass. Maximum height amount cut = desired height \Rightarrow $x \frac{1}{3}x = 3\frac{1}{2} \Rightarrow \frac{2}{3}x = \frac{7}{2} \Rightarrow x = \frac{7}{2} \cdot \frac{3}{2} = \frac{21}{4}$. The maximum height is $5\frac{1}{4}$ inches. - **77** Let x denote the number of months needed to recover the cost of the insulation. The savings in one month is 10% of \$200 = \$20, so the savings in x months is 20x. $20x = 2400 \implies x = 120$ months (or 10 yr). - **78** Let x denote the amount (in millions) invested in bonds. $x(0.06) + (800 x)(0.05) = 42 \implies 0.06x + 40 0.05x = 42 \implies 0.01x = 2 \implies x = 200.$ The arena should be financed by selling \$200 million in bonds and borrowing \$600 million. - **79** (a) They will meet when the sum of their distances is 224. Let t denote the desired number of seconds. Using distance = rate \times time, we have $1.5t + 2t = 224 \implies 3.5t = 224 \implies t = 64$ sec. - **(b)** The children will have walked 64(1.5) = 96 m and 64(2) = 128 m, respectively. - **80** Let l denote the length of the side parallel to the river bank. P = 2w + l - (a) $l = 2w \implies P = 2w + 2w = 4w$. $4w = 180 \implies w = 45 \text{ ft and } A = (45)(90) = 4050 \text{ ft}^2$. - **(b)** $l = \frac{1}{2}w \implies P = 2w + \frac{1}{2}w = \frac{5}{2}w$. $\frac{5}{2}w = 180 \implies w = 72$ ft and A = (72)(36) = 2592 ft². - (c) $l = w \implies P = 2w + w = 3w$. $3w = 180 \implies w = 60 \text{ ft and } A = (60)(60) = 3600 \text{ ft}^2$. - **81** Let x denote the distance to the target. We know the total time involved and need a formula for time. Solving d = rt for t gives us t = d/r. $\begin{array}{ll} \text{Time}_{\text{to target}} + \text{Time}_{\text{from target}} = \text{Time}_{\text{total}} & \Rightarrow & \frac{x}{3300} + \frac{x}{1100} = 1.5 \; \{\text{multiply by the lcd, } 3300\} & \Rightarrow \\ & x + 3x = 1.5(3300) & \Rightarrow & 4x = 4950 & \Rightarrow & x = 1237.5 \; \text{ft.} \end{array}$ **82** Let x denote the miles in one direction. A 6-minute-mile pace is equivalent to a rate of $\frac{1}{6}$ mile/min. Solving d=rt for t gives us t=d/r. Minutes_{north} + Minutes_{south} = Minutes_{total} $\Rightarrow \frac{x}{1/6} + \frac{x}{1/7} = 47 \Rightarrow$ 6x + 7x = 47 \Rightarrow $x = \frac{47}{13}$. The total distance is $2 \cdot \frac{47}{13} = \frac{94}{13}$, or $7\frac{3}{13}$ min **83** Let b_2 denote the larger base. $A=\frac{1}{2}(b_1+b_2)h \Rightarrow 5=\frac{1}{2}(3+b_2)(1) \Rightarrow 10=3+b_2 \Rightarrow b_2=7$ ft. - **84** Let h_1 denote the height of the cylinder. $V = \frac{2}{3}\pi r^3 + \pi r^2 h_1 = 11{,}250\pi$ and r = 15 \Rightarrow $2250\pi + 225\pi h_1 = 11{,}250\pi$ \Rightarrow $225\pi h_1 = 9000\pi$ \Rightarrow $h_1 = 40$. The total height is 40 ft + 15 ft = 55 ft. - **85** (a) $T = G (\frac{5.5}{1000})H$ H = 5280 ft and G = 70°F $\Rightarrow T = 70 (\frac{5.5}{1000})5280 = 40.96$
°F. - **(b)** $T = 32^{\circ} \text{F} \quad \Rightarrow \quad 32 = 70 \left(\frac{5.5}{1000}\right) H \quad \Rightarrow \quad \left(\frac{5.5}{1000}\right) H = 38 \quad \Rightarrow \quad H = 38 \left(\frac{1000}{5.5}\right) \approx 6909 \text{ ft.}$ - **86** (a) C = 227(G D) $G = 70^{\circ}$ F and $D = 55^{\circ}$ F $\Rightarrow C = 227(70 55) = 3405$ ft. - **(b)** $C = 3500 \text{ ft and } D = 65^{\circ}\text{F} \implies 3500 = 227(G 65) \implies G = \frac{3500}{227} + 65 \approx 80.4^{\circ}\text{F}$ - **87** $T = B \left(\frac{3}{1000}\right)h$ $B = 55^{\circ}F$ and h = 10,000 4000 = 6000 ft $\Rightarrow T = 55 \left(\frac{3}{1000}\right)(6000) = 37^{\circ}F$. - **88** (a) h = 65 + 3.14x x = 30 cm $\Rightarrow h = 65 + 3.14(30) = 159.2 \text{ cm}$. - **(b)** h = 73.6 + 3.0x x = 34 \Rightarrow h = 73.6 + 3(34) = 175.6 cm. The height of the skeleton has decreased by 175.6 174 = 1.6 cm due to aging after age 30. $\frac{1.6}{0.06} \approx 27$ years. The male was approximately 30 + 27 = 57 years old at death. - **89** (a) $v = 55 \Rightarrow d = v + (v^2/20) = 55 + (55^2/20) = 206.25 \text{ ft}$ - **(b)** $d = 120 \implies 120 = v + (v^2/20) \implies 2400 = 20v + v^2 \implies v^2 + 20v 2400 = 0 \implies (v + 60)(v 40) = 0 \implies v = 40 \text{ mi/hr}$ - **90** (a) $T = 98 \implies h = 1000(100 T) + 580(100 T)^2 = 1000(2) + 580(2)^2 = 4320 \text{ m}.$ - **(b)** If x = 100 T and h = 8840, then $8840 = 1000x + 580x^2$ \Rightarrow $29x^2 + 50x 442 = 0 \Rightarrow x = \frac{-50 \pm \sqrt{2500 + 51,272}}{2(29)} = \frac{-25 \pm \sqrt{13,443}}{29} \approx -4.86, 3.14.$ $x = -4.86 \Rightarrow T = 100 x = 104.86$ °C, which is outside the allowable range of T. $x = 3.14 \Rightarrow T = 100 x = 96.86$ °C for $95 \le T \le 100$. - **91** (a) The northbound plane travels $\frac{1}{2} \cdot 200 = 100$ miles from 2 P.M. to 2:30 P.M., so the distances of the northbound and eastbound planes are 100 + 200t and 400t, respectively. Using the Pythagorean theorem, $$d = \sqrt{(100 + 200t)^2 + (400t)^2} = \sqrt{100^2(1 + 2t)^2 + 100^2(4t)^2} = \sqrt{100^2[(1 + 2t)^2 + (4t)^2]}$$ $$= 100\sqrt{1 + 4t + 4t^2 + 16t^2} = 100\sqrt{20t^2 + 4t + 1}.$$ **(b)** $d = 500 \implies 500 = 100\sqrt{20t^2 + 4t + 1} \implies 5 = \sqrt{20t^2 + 4t + 1} \implies 5^2 = 20t^2 + 4t + 1 \implies 20t^2 + 4t - 24 = 0 \implies 5t^2 + t - 6 = 0 \implies (5t + 6)(t - 1) = 0 \implies$ t = 1 hour after 2:30 P.M., or 3:30 P.M. **92** Let t denote the number of seconds the rock falls, so that 4-t is the number of seconds for the sound to travel. Distance_{down} = Distance_{up} $$\Rightarrow$$ $16t^2 = 1100(4 - t)$ $\{d = rt\} \Rightarrow 4t^2 = 275(4 - t) \Rightarrow 4t^2 + 275t - 1100 = 0 \Rightarrow t = \frac{-275 \pm \sqrt{93,225}}{2(4)} = \frac{-275 + 5\sqrt{3729}}{8} \approx 3.79.$ The height is $16t^2 \approx 229.94$, or 230 ft. **93** Let x denote the number of \$10 reductions in price. Revenue = (unit price) × (# of units) $$\Rightarrow$$ 7000 = (300 - 10x)(15 + 2x) \Rightarrow 7000 = 10(30 - x)(15 + 2x) \Rightarrow 700 = -2x² + 45x + 450 \Rightarrow 2x² - 45x + 250 = 0 \Rightarrow (2x - 25)(x - 10) = 0 \Rightarrow x = 10 or 12.5. The selling price is \$300 - \$10(10) = \$200, or \$300 - \$10(12.5) = \$175. **94** The total surface area is the sum of the surface area of the cylinder and that of the top and bottom. $$S = 2\pi r h + 2\pi r^2 \text{ and } h = 4 \quad \Rightarrow \quad 10\pi = 8\pi r + 2\pi r^2 \text{ {divide by }} 2\pi \} \quad \Rightarrow \quad 5 = 4r + r^2 \quad \Rightarrow \\ r^2 + 4r - 5 = 0 \quad \Rightarrow \quad (r+5)(r-1) = 0 \quad \Rightarrow \quad r = 1 \text{, and the diameter is 2 ft.}$$ **95** (a) Area_{capsule} = Area_{sphere} {the two ends are hemispheres} + Area_{cylinder} $= 4\pi r^2 + 2\pi rh = 4\pi \left(\frac{1}{4}\right)^2 + 2\pi \left(\frac{1}{4}\right)\left(2 - \frac{1}{2}\right) = \frac{\pi}{4} + \frac{3\pi}{4} = \pi \text{ cm}^2.$ $Area_{tablet} = Area_{top \text{ and bottom}} + Area_{cylinder} = 2\pi r^2 + 2\pi r(\frac{1}{2}) = 2\pi r^2 + \pi r.$ Equating the two surface areas yields $2\pi r^2 + \pi r = \pi$ $2r^2+r-1=0 \quad \Rightarrow \quad (2r-1)(r+1)=0 \quad \Rightarrow \quad r=\frac{1}{2},$ and the diameter is 1 cm. (b) Volume_{capsule} = Volume_{sphere} + Volume_{cylinder} = $\frac{4}{3}\pi r^3 + \pi r^2 h = \frac{4}{3}\pi \left(\frac{1}{4}\right)^3 + \pi \left(\frac{1}{4}\right)^2 \frac{3}{2} = \frac{\pi}{48} + \frac{3\pi}{32} = \frac{11\pi}{96} \approx 0.360 \text{ cm}^3.$ **Volume**_{tablet} = Volume_{cylinder} = $\pi r^2 h = \pi (\frac{1}{2})^2 \frac{1}{2} = \frac{\pi}{8} \approx 0.393 \text{ cm}^3$. **96** $P = 15,700S^{5/2}RD \implies S^{5/2} = \frac{P}{15,700RD} \implies$ $$S = \left(\frac{P}{15,700RD}\right)^{2/5} = \left[\frac{380}{(15,700)(0.113/2)(2)}\right]^{2/5} \approx 0.54$$ **97** From the Pythagorean theorem, $d^2 + h^2 = L^2$. Since d is to be 25% of L, we have $$d = \frac{1}{4}L, \text{ so } \left(\frac{1}{4}L\right)^2 + h^2 = L^2 \quad \Rightarrow \quad h^2 = L^2 - \left(\frac{1}{4}L\right)^2 \quad \Rightarrow \quad h^2 = 1L^2 - \frac{1}{16}L^2 \quad \Rightarrow \quad h^2 = \frac{15}{16}L^2 \quad \Rightarrow \quad h = \sqrt{\frac{15}{16}L^2} \text{ {since } } h > 0 \text{ } \} = \frac{\sqrt{15}}{4}L \approx 0.97L. \text{ Thus, } h \approx 97\%L.$$ **99** Cost_{underwater} + Cost_{overland} = Cost_{total} \Rightarrow 7500 · (underwater miles) + 6000 · (overland miles) = 35,000 \Rightarrow 7500 $\sqrt{x^2 + 1}$ + 6000(5 - x) = 35,000 \Rightarrow 7500 $\sqrt{x^2 + 1}$ + 30,000 - 6000x = 35,000 \Rightarrow $$7500\sqrt{x^2 + 1} + 6000(5 - x) = 55,000 \implies 7500\sqrt{x^2 + 1} = 6000x + 5,000 \implies 15\sqrt{x^2 + 1} = 12x + 10 \text{ (divide by 500)} \implies 15\sqrt{x^2 + 10} = 12x + 10 \text{ (divide by 500)} \implies 15\sqrt{x^2 + 10} = 12x + 10 \text{ (divide by 500)} \implies 15\sqrt{x^2 + 10} = 12x + 10 \text{ (divide by 500)} \implies 15\sqrt{x^2 + 10} = 12x + 10 \text{ (divide by 500)} \implies 15\sqrt{x^2 + 10} = 12x + 10 \text{ (divide by 500)} \implies 15\sqrt{x^2 + 10} = 12x + 10 \text{ (divide by 500)} \implies 15\sqrt{x^2 + 10} = 12x + 10 \text{ (divide by 500)} \implies 15\sqrt{x^2 + 10} = 12x + 10 \text{ (divide by 500)} \implies 15\sqrt{x^2 + 10} = 12x + 10 \text{ (divide by 500)} \implies 15\sqrt{x^2 + 10} = 12x + 10 \text{ (divide by 500)} \implies 12x + 10 \text{$$ $$225(x^2+1) = 144x^2 + 240x + 100 \implies 225x^2 + 225 = 144x^2 + 240x + 100 \implies$$ $$81x^{2} - 240x + 125 = 0 \quad \Rightarrow \quad x = \frac{240 \pm \sqrt{17,100}}{162} = \frac{6 \cdot 40 \pm \sqrt{900 \cdot 19}}{6 \cdot 27} = \frac{6 \cdot 40 \pm 30\sqrt{19}}{6 \cdot 27} = \frac{40 \pm 5\sqrt{19}}{27} \approx \frac{40 \pm 5\sqrt{19}}{27}$$ 2.2887, 0.6743 mi. There are two possible routes. - **100** The y-value decreases 1.2 units for each 1 unit increase in the x-value. The data are best described by equation (1), y = -1.2x + 2. - **101** The y-values are increasing rapidly and can best be described by equation (4), $y = x^3 x^2 + x 10$. **102** (a) Let $Y_1 = T_1 = -1.09L + 96.01$ and $Y_2 = T_2 = -0.011L^2 - 0.126L + 81.45$. Table each equation and compare them to the actual temperatures. | x(L) | 85 | 75 | 65 | 55 | 45 | 35 | 25 | 15 | 5 | |----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | \mathbf{Y}_1 | 3.36 | 14.26 | 25.16 | 36.06 | 46.96 | 57.86 | 68.76 | 75.66 | 90.56 | | Y_2 | -8.74 | 10.13 | 26.79 | 41.25 | 53.51 | 63.57 | 71.43 | 77.09 | 80.55 | | S. Hem. | -5 | 10 | 27 | 42 | 53 | 65 | 75 | 78 | 79 | Comparing Y_1 (T_1) with Y_2 (T_2), we can see that the linear equation T_1 is not as accurate as the quadratic equation T_2 . **(b)** $$L = 50 \Rightarrow T_2 = -0.011(50)^2 - 0.126(50) + 81.45 = 47.65$$ °F. **103** (a) Let $Y_1 = D_1 = 6.096L + 685.7$ and $Y_2 = D_2 = 0.00178L^3 - 0.072L^2 + 4.37L + 719$. Table each equation and compare them to the actual values. | x(L) | 0 | 10 | 20 | 30 | 40 | 50 | 60 | |--------|-----|-----|-----|-----|-----|-----|------| | Y_1 | 686 | 747 | 808 | 869 | 930 | 991 | 1051 | | Y_2 | 719 | 757 | 792 | 833 | 893 | 980 | 1106 | | Summer | 720 | 755 | 792 | 836 | 892 | 978 | 1107 | Comparing Y_1 (D_1) with Y_2 (D_2), we see that the linear equation D_1 is not as accurate as the
cubic equation D_2 . **(b)** $$L = 35 \implies D_2 = 0.00178(35)^3 - 0.072(35)^2 + 4.37(35) + 719 \approx 860 \text{ min.}$$ ### 1.5 Exercises $$[1]$$ $(5-2i)+(-3+6i)=[5+(-3)]+(-2+6)i=2+4i$ $$\boxed{2}$$ $(-5+4i)+(3+9i)=(-5+3)+(4+9)i=-2+13i$ $$\boxed{\mathbf{3}}$$ $(7-8i)-(-5-3i)=(7+5)+(-8+3)i=12-5i$ $$\boxed{4}$$ $(-3+8i)-(2+3i)=(-3-2)+(8-3)i=-5+5i$ $$\begin{array}{ll} \boxed{\textbf{5}} & (3+5i)(2-7i) = (3+5i)2 + (3+5i)(-7i) & \{\text{distributive property}\} \\ & = 6+10i-21i-35i^2 & \{\text{multiply terms}\} \\ & = 6-11i-35(-1) & \{\text{combine i-terms, $i^2=-1}\} \\ & = 6-11i+35 \\ & = 41-11i \\ \end{array}$$ **6** $$(-2+3i)(8-i) = (-16-3i^2) + (2+24)i = (-16+3) + 26i = -13+26i$$ $$\boxed{7} \quad (4-3i)(2+7i) = (8-21i^2) + (28-6)i = (8+21) + 22i = 29+22i$$ **8** $$(8+2i)(7-3i) = (56-6i^2) + (-24+14)i = (56+6) - 10i = 62-10i$$ **9** Use the special product formula for $(x-y)^2$ on the inside front cover of the text. $$(5-2i)^2 = 5^2 - 2(5)(2i) + (2i)^2 = 25 - 20i + 4i^2 = (25-4) - 20i = 21 - 20i$$ $$\boxed{10} (6+7i)^2 = 6^2 + 2(6)(7i) + (7i)^2 = (36-49) + 84i = -13 + 84i$$ $$\boxed{11} i(3+4i)^2 = i \left[3^2 + 2(3)(4i) + (4i)^2 \right] = i \left[(9-16) + 24i \right] = i(-7+24i) = -24-7i$$ $$\boxed{12} i(2-7i)^2 = i \left[2^2 + 2(2)(-7i) + (-7i)^2 \right] = i \left[(4-49) - 28i \right] = i(-45-28i) = 28-45i$$ **13** $$(3+4i)(3-4i)$$ {note that this difference of squares ...} $$=3^2-(4i)^2=9-(-16)=\{\dots \text{ becomes a "sum of squares"}\}\ 9+16=25$$ $$\boxed{14} (4+7i)(4-7i) = 4^2 - (7i)^2 = 16 - (-49) = 16 + 49 = 65$$ **15** (a) Since $$i^k = 1$$ if k is a multiple of 4, we will write i^{43} as $i^{40}i^3$, knowing that i^{40} will reduce to 1. $$i^{43} = i^{40}i^3 = (i^4)^{10}(-i) = 1^{10}(-i) = -i$$ **(b)** As in Example 3(e), choose $$b = 20$$. $i^{-20} \cdot i^{20} = i^0 = 1$. **16** (a) $$i^{68} = (i^4)^{17} = 1^{17} = 1$$ **(b)** As in Example 3(e), choose $$b = 36$$. $i^{-33} \cdot i^{36} = i^3 = -i$. **17** (a) Since $$i^k = 1$$ if k is a multiple of 4, we will write i^{73} as $i^{72}i^1$, knowing that i^{72} will reduce to 1. $$i^{73} = i^{72}i = (i^4)^{18}i = 1^{18}i = i$$ **(b)** As in Example 3(e), choose $$b = 48$$. $i^{-46} \cdot i^{48} = i^2 = -1$. **18** (a) $$i^{66} = i^{64}i^2 = (i^4)^{16}(-1) = 1^{16}(-1) = -1$$ **(b)** As in Example 3(e), choose $$b = 56$$. $i^{-55} \cdot i^{56} = i^1 = i$. 19 Multiply both the numerator and the denominator by the conjugate of the denominator to eliminate all $$i$$'s in the denominator. The new denominator is the sum of the squares of the coefficients—in this case, 2^2 and 4^2 . $$\frac{3}{2+4i} \cdot \frac{2-4i}{2-4i} = \frac{3(2-4i)}{4-(-16)} = \frac{6-12i}{20} = \frac{6}{20} - \frac{12}{20}i = \frac{3}{10} - \frac{3}{5}i$$ $$\boxed{\textbf{20}} \ \frac{5}{3-7i} \cdot \frac{3+7i}{3+7i} = \frac{5(3+7i)}{9-(-49)} = \frac{15+35i}{58} = \frac{15}{58} + \frac{35}{58}i$$ **21** Multiply both the numerator and the denominator by the conjugate of the denominator to eliminate all i's in the denominator. The new denominator is the sum of the squares of the coefficients—in this case, 6^2 and 2^2 . $$\frac{1-7i}{6-2i} \cdot \frac{6+2i}{6+2i} = \frac{(6+14)+(2-42)i}{36-(-4)} = \frac{20-40i}{40} = \frac{20}{40} - \frac{40}{40}i = \frac{1}{2}-i$$ $$\boxed{\textbf{22}} \ \frac{2+9i}{-3-i} \cdot \frac{-3+i}{-3+i} = \frac{(-6-9)+(2-27)i}{9-(-1)} = \frac{-15-25i}{10} = -\frac{3}{2} - \frac{5}{2}i$$ $$\boxed{\textbf{23}} \ \frac{-4+6i}{2+7i} \cdot \frac{2-7i}{2-7i} = \frac{(-8+42)+(28+12)i}{4-(-49)} = \frac{34+40i}{53} = \frac{34}{53} + \frac{40}{53}i$$ $$\boxed{24} \frac{-3-2i}{5+2i} \cdot \frac{5-2i}{5-2i} = \frac{(-15-4)+(6-10)i}{25-(-4)} = \frac{-19-4i}{29} = -\frac{19}{29} - \frac{4}{29}i$$ **25** Multiplying the denominator by i will eliminate the i's in the denominator. $$\frac{4-2i}{-7i} = \frac{4-2i}{-7i} \cdot \frac{i}{i} = \frac{4i-2i^2}{-7i^2} = \frac{2+4i}{7} = \frac{2}{7} + \frac{4}{7}i$$ $$\boxed{26} \frac{-2+6i}{3i} = \frac{-2+6i}{3i} \cdot \frac{-i}{-i} = \frac{2i-6i^2}{-3i^2} = \frac{6+2i}{3} = 2+\frac{2}{3}i$$ **27** Use the special product formula for $(x+y)^3$ on the inside front cover of the text. $$(2+5i)^3 = (2)^3 + 3(2)^2(5i) + 3(2)(5i)^2 + (5i)^3$$ = 8 + 60i + 6(25i^2) + 125i^3 = (8+150i^2) + (60i + 125i^3) = (8-150) + (60-125)i = -142-65i **28** $$(3-2i)^3 = (3)^3 + 3(3)^2(-2i) + 3(3)(-2i)^2 + (-2i)^3 = 27 - 54i + 9(4i^2) - 8i^3$$ = $(27+36i^2) + (-54i-8i^3) = (27-36) + (-54+8)i = -9 - 46i$ **29** A common mistake is to multiply $\sqrt{-4}\sqrt{-16}$ and obtain $\sqrt{64}$, or 8. The correct procedure is $\sqrt{-4}\sqrt{-16} = \sqrt{4}i \cdot \sqrt{16}i = (2i)(4i) = 8i^2 = -8$. $$\left(2 - \sqrt{-4}\right)\left(3 - \sqrt{-16}\right) = (2 - 2i)(3 - 4i) = (6 - 8) + (-6i - 8i) = -2 - 14i$$ $$\boxed{30} \left(-3 + \sqrt{-25} \right) \left(8 - \sqrt{-36} \right) = (-3 + 5i)(8 - 6i) = (-24 + 30) + (40i + 18i) = 6 + 58i$$ $$\boxed{\textbf{31}} \ \frac{4+\sqrt{-81}}{2-\sqrt{-9}} = \frac{4+9i}{2-3i} \cdot \frac{2+3i}{2+3i} = \frac{(8-27)+(12+18)i}{4-(-9)} = \frac{-19+30i}{13} = -\frac{19}{13} + \frac{30}{13}i = -\frac{19}{13}i -\frac{19}{13}i$$ $$\boxed{\textbf{32}} \ \frac{5-\sqrt{-121}}{1+\sqrt{-25}} = \frac{5-11i}{1+5i} \cdot \frac{1-5i}{1-5i} = \frac{(5-55)+(-25-11)i}{1-(-25)} = \frac{-50-36i}{26} = -\frac{25}{13} - \frac{18}{13}i$$ $$\boxed{\textbf{33}} \ \frac{\sqrt{-36}\sqrt{-49}}{\sqrt{-16}} = \frac{(6i)(7i)}{4i} = \frac{42i^2}{4i} = \frac{-21}{2i} = \frac{-21}{2i} \cdot \frac{-i}{-i} = \frac{21i}{-2i^2} = \frac{21}{2}i$$ $$\boxed{34} \frac{\sqrt{-25}}{\sqrt{-16}\sqrt{-81}} = \frac{5i}{(4i)(9i)} = \frac{5i}{36i^2} = \frac{5i}{-36} = -\frac{5}{36}i$$ **35** We need to equate the real parts and the imaginary parts on each side of "=". $$4 + (x + 2y)i = x + 2i \quad \Rightarrow \quad 4 = x \text{ and } x + 2y = 2 \quad \Rightarrow \quad$$ $$x = 4$$ and $4 + 2y = 2$ \Rightarrow $2y = -2$ \Rightarrow $y = -1$, so $x = 4$ and $y = -1$. **36** $$(x-y) + 3i = 4 + yi \implies 3 = y \text{ and } x - y = 4 \implies x - 3 = 4 \implies x = 7, y = 3$$ $$\boxed{\bf 37} \ (2x-y) - 16i = 10 + 4yi \quad \Rightarrow \quad 2x-y = 10 \ {\rm and} \ -16 = 4y \quad \Rightarrow \quad y = -4 \ {\rm and} \ 2x - (-4) = 10 \quad \Rightarrow \quad x - y = 10 \ {\rm and} \ -16 = 4y \ \Rightarrow \quad y = -4 \ {\rm and} \ 2x - (-4) = 10 \ \Rightarrow \quad x - y = 10 \ {\rm and} \ -16 = 4y \ \Rightarrow \quad y = -4 \ {\rm and} \ 2x - (-4) = 10 \ \Rightarrow \quad x - y = 10 \ {\rm and} \ -16 = 4y \ \Rightarrow \quad y = -4 \ {\rm and} \ 2x - (-4) = 10 \ \Rightarrow \quad x - y = 10 \ {\rm and} \ -16 = 4y \ \Rightarrow \quad y = -4 \ {\rm and} \ 2x - (-4) = 10 \ \Rightarrow \quad x - y = 10 \ {\rm and} \ -16 = 4y \ \Rightarrow \quad y = -4 \ {\rm and} \ 2x - (-4) = 10 \ \Rightarrow \quad x - y = 10 \ {\rm and} \ -16 = 4y \ \Rightarrow \quad y = -4 \ {\rm and} \ 2x - (-4) = 10 \ \Rightarrow \quad x - y = 10 \ {\rm and} \ -16 = 4y \ \Rightarrow \quad y = -4 \ {\rm and} \ 2x - (-4) = 10 \ \Rightarrow \quad x - y = 10 \ {\rm and} \ -16 = 4y \ \Rightarrow \quad y = -4 \ {\rm and} \ 2x - (-4) = 10 \ \Rightarrow \quad x - y = 10 \ {\rm and} \ -16 = 4y \ \Rightarrow \quad x - y = 10 \ {\rm and} \ -16 = 10 \ {\rm and}$$ $$2x + 4 = 10$$ \Rightarrow $2x = 6$ \Rightarrow $x = 3$, so $x = 3$ and $y = -4$. **38** $$8 + (3x + y)i = 2x - 4i \implies 2x = 8 \text{ and } 3x + y = -4 \implies x = 4 \text{ and } 12 + y = -4 \implies x = 4, y = -16$$ $$39 \ x^2 - 6x + 13 = 0 \quad \Rightarrow \quad x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(13)}}{2(1)} = \frac{6 \pm \sqrt{36 - 52}}{2} = \frac{6 \pm \sqrt{-16}}{2} = \frac{6 \pm 4i}{2} = 3 \pm 2i$$ **40** $$x^2 - 2x + 26 = 0 \implies$$ $$x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(26)}}{2(1)} = \frac{2 \pm \sqrt{4 - 104}}{2} = \frac{2 \pm \sqrt{-100}}{2} = \frac{2 \pm 10i}{2} = 1 \pm 5i$$ $$\boxed{41} x^2 + 12x + 37 = 0 \implies$$ $$x = \frac{-12 \pm \sqrt{(-12)^2 - 4(1)(37)}}{2(1)} = \frac{-12 \pm \sqrt{144 - 148}}{2} = \frac{-12 \pm \sqrt{-4}}{2} = \frac{-12 \pm 2i}{2} = -6 \pm i$$ $$\boxed{\textbf{42}} \ x^2 + 8x + 17 = 0 \quad \Rightarrow \quad x = \frac{-8 \pm \sqrt{64 - 68}}{2(1)} = \frac{-8 \pm \sqrt{-4}}{2} = \frac{-8 \pm 2i}{2} = -4 \pm i$$ $$\boxed{\textbf{43}} \ x^2 - 5x + 20 = 0 \quad \Rightarrow \quad x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(20)}}{2(1)} = \frac{5 \pm \sqrt{25 - 80}}{2} = \frac{5
\pm \sqrt{-55}}{2} = \frac{5}{2} \pm \frac{1}{2} \sqrt{55} \ i$$ $$\boxed{\textbf{44}} \ x^2 + 3x + 6 = 0 \quad \Rightarrow \quad x = \frac{-3 \pm \sqrt{9 - 24}}{2(1)} = \frac{-3 \pm \sqrt{-15}}{2} = -\frac{3}{2} \pm \frac{1}{2} \sqrt{15} \ i$$ $$\boxed{\textbf{45}} \ 4x^2 + x + 3 = 0 \quad \Rightarrow \quad x = \frac{-1 \pm \sqrt{1^2 - 4(4)(3)}}{2(4)} = \frac{-1 \pm \sqrt{1 - 48}}{8} = \frac{-1 \pm \sqrt{-47}}{8} = -\frac{1}{8} \pm \frac{1}{8} \sqrt{47} \ i -\frac{1}{8}$$ $$\boxed{\textbf{46}} \ -3x^2 + x - 5 = 0 \quad \Rightarrow \quad x = \frac{-1 \pm \sqrt{1^2 - 4(-3)(-5)}}{2(-3)} = \frac{-1 \pm \sqrt{1 - 60}}{-6} = \frac{1}{6} \pm \frac{1}{6}\sqrt{59} \, i$$ Solving $x^3 = -64$ by taking the cube root of both sides would only give us the solution x = -4, so we need to factor $x^3 + 64$ as the sum of cubes. $x^3 + 64 = 0 \Rightarrow (x + 4)(x^2 - 4x + 16) = 0 \Rightarrow (x + 4)(x^2 - 4x + 16) = 0$ $$x = -4 \text{ or } x = \frac{4 \pm \sqrt{16 - 64}}{2} = \frac{4 \pm 4\sqrt{3}i}{2}$$. The three solutions are $-4, 2 \pm 2\sqrt{3}i$. **48** $$x^3 - 27 = 0 \implies (x - 3)(x^2 + 3x + 9) = 0 \implies x = 3 \text{ or } x = \frac{-3 \pm \sqrt{9 - 36}}{2} = \frac{-3 \pm 3\sqrt{3}i}{2}$$. The three solutions are $3, -\frac{3}{2} \pm \frac{3}{2}\sqrt{3}i$. $\begin{array}{lll} \boxed{\textbf{49}} \ 27x^3 = (x+5)^3 & \Rightarrow & (3x)^3 - (x+5)^3 = 0 & \Rightarrow \\ & \{ \text{difference of cubes} \} \ [3x - (x+5)] \ \big[(3x)^2 + 3x(x+5) + (x+5)^2 \big] = 0 & \Rightarrow \\ & (3x-x-5)(9x^2+3x^2+15x+x^2+10x+25) = 0 & \Rightarrow \\ & (2x-5)(13x^2+25x+25) = 0 & \Rightarrow & x = \frac{5}{2} \ \text{or} \ x = \frac{-25 \pm \sqrt{625-1300}}{2(13)} = \frac{-25 \pm 15\sqrt{3} \, i}{26}. \end{array}$ The three solutions are $\frac{5}{2}$, $-\frac{25}{26} \pm \frac{15}{26} \sqrt{3} i$. $$\begin{array}{lll} \boxed{\textbf{50}} \ 16x^4 = (x-4)^4 & \Rightarrow & (4x^2)^2 - \left[(x-4)^2\right]^2 = 0 & \Rightarrow & \{\text{difference of squares}\} \\ & \left[4x^2 + (x-4)^2\right] \left[4x^2 - (x-4)^2\right] = 0 & \Rightarrow & (5x^2 - 8x + 16)(3x^2 + 8x - 16) = 0 & \Rightarrow \\ & 5x^2 - 8x + 16 = 0 \text{ or } 3x^2 + 8x - 16 = (x+4)(3x-4) = 0. \\ & 5x^2 - 8x + 16 = 0 & \Rightarrow & x = \frac{8 \pm \sqrt{64 - 320}}{10} = \frac{8 \pm 16i}{10} = \frac{4 \pm 8i}{5}. \end{array}$$ The four solutions are $-4, \frac{4}{3}, \frac{4}{5} \pm \frac{8}{5}i$. **Note:** In Exercises 57–62: Let z = a + bi and w = c + di. (*) We are really looking ahead to the terms we want to obtain, \overline{z} and \overline{w} . $$\boxed{\textbf{58}} \ \overline{z-w} = \overline{(a+bi)-(c+di)} = \overline{(a-c)+(b-d)i} = (a-c)-(b-d)i = (a-bi)-(c-di) = \overline{z}-\overline{w}.$$ **61** (1) If $$\overline{z} = z$$, then $a - bi = a + bi$ and hence $-bi = bi$, or $2bi = 0$. Thus, $b = 0$ and $z = a$ is real. (2) Conversely, if z is real, then $$b=0$$ and hence $\overline{z}=\overline{a+0i}=a-0i=a+0i=z$. Thus, by (1) and (2), $\overline{z} = z$ if and only if z is real. $$\boxed{\textbf{62}} \ \overline{z^2} = \overline{(a+bi)^2} = \overline{a^2 + 2abi - b^2} = \overline{(a^2 - b^2) + 2abi} = (a^2 - b^2) - 2abi = a^2 - 2abi - b^2 = (a-bi)^2 = (\overline{z})^2$$ #### 1.6 Exercises **Note:** Brackets, "[" and "]", are used with \leq or \geq and indicate that the endpoint of the interval is part of the solution. Parentheses, "(" and ")", are used with \leq or > and indicate that the endpoint is *not* part of the solution. **5** $$(-5,4] \Leftrightarrow -5 < x \le 4$$ $$\boxed{6} \quad (-6,\infty) \quad \Leftrightarrow \quad x > -6$$ $$\boxed{\textbf{7}} \quad 2x+5 < 3x-7 \quad \Rightarrow \quad -x < -12 \quad \Rightarrow \quad x > 12 \text{ {change inequality}} \quad \Leftrightarrow \quad (12,\infty)$$ **8** $$x-6>5x+3 \Rightarrow -4x>9 \Rightarrow x<-\frac{9}{4}$$ {change inequality} $\Leftrightarrow \left(-\infty,-\frac{9}{4}\right)$ $$\boxed{9} \quad \left[3 \leq \frac{2x-9}{5} < 7\right] \cdot 5 \text{ {multiply by the lcd, 5}} \quad \Rightarrow \quad 15 \leq 2x-9 < 35 35$$ $24 \leq 2x < 44 \; \{ \text{add 9 to all three parts} \} \quad \Rightarrow \quad 12 \leq x < 22 \; \{ \text{divide all three parts by 2} \} \quad \Leftrightarrow \quad$ [12, 22) {equivalent interval notation} $$\boxed{\mathbf{10}} \left[-2 < \frac{4x+1}{3} \le 0 \right] \cdot 3 \quad \Rightarrow \quad -6 < 4x+1 \le 0 \quad \Rightarrow \quad -7 < 4x \le -1 \quad \Rightarrow \quad -\frac{7}{4} < x \le -\frac{1}{4} \quad \Leftrightarrow \quad \left(-\frac{7}{4}, -\frac{1}{4} \right]$$ **11** By the law of signs, a quotient is positive if the sign of the numerator and the sign of the denominator are the same. Since the numerator is positive, $\frac{4}{3x+2} > 0 \implies 3x+2 > 0 \implies x > -\frac{2}{3} \iff \left(-\frac{2}{3}, \infty\right)$. The expression is never equal to 0 since the numerator is never 0. Thus, the solution of $\frac{4}{3x+2}$ 0 is $\left(-\frac{2}{3},\infty\right)$. $$\boxed{\textbf{12}} \ \frac{3}{2x+5} \leq 0 \quad \Rightarrow \quad 2x+5 < 0 \ \{ \text{denominator must be negative} \} \quad \Rightarrow \quad 2x < -5 \quad \Rightarrow \quad x < -\frac{5}{2} \quad \Leftrightarrow \quad \left(-\infty, -\frac{5}{2} \right)$$ $$\boxed{13} \frac{-7}{4-3x} > 0 \quad \Rightarrow \quad 4-3x < 0 \text{ {denominator must also be negative}} \quad \Rightarrow$$ $$4 < 3x \Rightarrow 3x > 4 \Rightarrow x > \frac{4}{3} \Leftrightarrow \left(\frac{4}{3}, \infty\right)$$ $$\boxed{14} \frac{-3}{2-x} < 0 \quad \Rightarrow \quad 2-x > 0 \quad \Rightarrow \quad 2 > x \quad \Rightarrow \quad x < 2 \quad \Leftrightarrow \quad (-\infty, 2)$$ **15** $$(1-x)^2 > 0 \ \forall x \text{ except } 1. \text{ Thus, } \frac{5}{(1-x)^2} > 0 \text{ has solution } \mathbb{R} - \{1\}.$$ **16** $$x^2 + 4 > 0 \ \forall x$$. Hence, $\frac{3}{x^2 + 4} > 0 \ \forall x$, and $\frac{3}{x^2 + 4} < 0$ has no solution. $$\boxed{\textbf{17}} \; |x+3| < 0.01 \quad \Rightarrow \quad -0.01 < x+3 < 0.01 \quad \Rightarrow \quad -3.01 < x < -2.99 \; \; \Leftrightarrow \; \; (-3.01, -2.99)$$ $$\boxed{\textbf{18}} \; |x-4| \leq 0.03 \quad \Rightarrow \quad -0.03 \leq x-4 \leq 0.03 \quad \Rightarrow \quad 3.97 \leq x \leq 4.03 \; \; \Leftrightarrow \; \; [3.97, 4.03]$$ $$\boxed{\textbf{19}} \ |3x-7| \geq 5 \quad \Rightarrow \quad 3x-7 \geq 5 \text{ or } 3x-7 \leq -5 \quad \Rightarrow \quad 3x \geq 12 \text{ or } 3x \leq 2 \quad \Rightarrow \quad \leq$$ $$x \ge 4 \text{ or } x \le \frac{2}{3} \iff \left(-\infty, \frac{2}{3}\right] \cup \left[4, \infty\right)$$ $$x < -\frac{17}{7} \text{ or } x > -\frac{5}{7} \iff \left(-\infty, -\frac{17}{7}\right) \cup \left(-\frac{5}{7}, \infty\right)$$ **21** Since $$|7x+2| \ge 0 \ \forall x, |7x+2| > -2$$ has solution $(-\infty, \infty)$. **22** Since $$|6x - 5| \ge 0 \ \forall x, |6x - 5| \le -2$$ has no solution. **23** $$|3x-9|>0 \ \forall x \text{ except when } 3x-9=0, \text{ or } x=3.$$ The solution is $(-\infty,3)\cup(3,\infty)$. **24** $$|5x+2| = 0$$ if $x = -\frac{2}{5}$, but is never less than 0. Thus, $|5x+2| \le 0$ has solution $x = -\frac{2}{5}$. $$\boxed{\textbf{25}} \ -2 < |x| < 4 \quad \Rightarrow \quad -2 < |x| \ \textit{and} \ |x| < 4. \ \text{Since} \ -2 \ \text{is always less than} \ |x| \ \{\text{because} \ |x| \geq 0\},$$ we only need to consider $$|x| < 4$$. $|x| < 4 \implies -4 < x < 4 \Leftrightarrow (-4,4)$ **26** $$1 < |x| < 5 \implies 1 < x < 5 \text{ or } 1 < -x < 5 \implies 1 < x < 5 \text{ or } -1 > x > -5 \implies 1 < x < 5 \text{ or } -5 < x < -1 \iff (-5, -1) \cup (1, 5)$$ (3x+1)(5-10x)>0 • See the sign chart for details concerning the signs of the individual factors and the resulting sign. The given inequality has solutions in the interval $\left(-\frac{1}{3},\frac{1}{2}\right)$, which corresponds to the positive values for the Resulting sign. | Interval | $\left(-\infty,-\frac{1}{3}\right)$ | $\left(-\frac{1}{3},\frac{1}{2}\right)$ | $\left(\frac{1}{2},\infty\right)$ | |------------------|-------------------------------------|---|-----------------------------------| | Sign of $5-10x$ | + | + | _ | | Sign of $3x + 1$ | _ | + | + | | Resulting sign | _ | + | _ | **28** $(x+2)(x-1)(4-x) \le 0$ • From the chart, we see the product is negative for $x \in (-2,1) \cup (4,\infty)$. Since we want to also include the values that make the product equal to zero $\{-2, 1, \text{ and } 4\}$, the solution is $[-2, 1] \cup [4, \infty)$. | Interval | $(-\infty, -2)$ | (-2,1) | (1,4) | $(4,\infty)$ | |-----------------|-----------------|--------|-------|--------------| | Sign of $4-x$ | + | + | + | | | Sign of $x-1$ | _ | _ | + | + | | Sign of $x + 2$ | _ | + | + | + | | Resulting sign | + | _ | + | _ | **29** $$x^2 - x - 6 < 0 \implies (x - 3)(x + 2) < 0$$ \bigstar (-2,3) | Interval | $(-\infty, -2)$ | (-2, 3) | $(3,\infty)$ | |----------------|-----------------|---------|--------------| | Sign of $x-3$ | _ | _ | + | | Sign of $x+2$ | _ | + | + | | Resulting sign | + | _ | + | **30** $$x^2 + 4x + 3 \ge 0 \implies (x+1)(x+3) \ge 0$$ $$\bigstar (-\infty, -3] \cup [-1, \infty)$$ | Interval | $(-\infty, -3)$ | (-3, -1) | $(-1,\infty)$ | |-----------------|-----------------|----------|---------------| | Sign of $x + 1$ | _ | _ | + | | Sign of $x + 3$ | _ | + | + | | Resulting sign | + | _ | + | **31** $$x(2x+3) > 5 \Rightarrow 2x^2 + 3x - 5 > 0 \Rightarrow (2x+5)(x-1) = 0$$ $$\bigstar (-\infty, -\frac{5}{3}] \cup [1, \infty)$$ | 31 $x(2x+3) \ge 5 \implies 2x^2 + 3x$ | $-5 \ge 0 \implies ($ | 2x+5)(x-1) | 1) 0 | | $\bigstar \left(-\infty, -\frac{5}{2}\right] \cup \left[1, \infty\right)$ | |--|-----------------------|-----------------------------------|-------------------------------|--------------|---| | | Interval | $\left(-\infty,- rac{5}{2} ight)$ | $\left(-\frac{5}{2},1\right)$ | $(1,\infty)$ | | | | Sign of $x-1$ | _ | _ | + | | | | Sign of $2x + 5$ | _ | + | + | | |
| Resulting sign | + | _ | + | | | | | | | | | $$\boxed{32} \ 8x - 15 > x^2 \quad \Rightarrow \quad x^2 - 8x + 15 < 0 \quad \Rightarrow \quad (x - 3)(x - 5) < 0$$ \bigstar (3, 5) | Interval | $(-\infty,3)$ | (3, 5) | $(5,\infty)$ | |----------------|---------------|--------|--------------| | Sign of $x-5$ | _ | _ | + | | Sign of $x-3$ | _ | + | + | | Resulting sign | + | _ | + | \bigstar $[-2,2) \cup (5,\infty)$ **Note:** Solving $x^2 < a^2$ or $x^2 > a^2$ for a > 0 may be achieved using factoring, that is, $x^2 - a^2 < 0 \Rightarrow (x+a)(x-a) < 0 \Rightarrow -a < x < a$; or by taking the square root of each side, that is, $\sqrt{x^2} < \sqrt{a^2} \Rightarrow |x| < a \Rightarrow -a < x < a$. The most common mistake is forgetting that $\sqrt{x^2} = |x|$. $$\boxed{\textbf{33}} \ 25x^2 - 16 < 0 \quad \Rightarrow \quad x^2 < \tfrac{16}{25} \quad \Rightarrow \quad |x| < \tfrac{4}{5} \quad \Rightarrow \quad -\tfrac{4}{5} < x < \tfrac{4}{5} \quad \Leftrightarrow \quad \left(-\tfrac{4}{5}, \tfrac{4}{5}\right)$$ **34** $$25x^2 - 16x < 0 \implies x(25x - 16) < 0$$ $\bigstar (0, \frac{16}{25})$ | Interval | $(-\infty,0)$ | $\left(0, \frac{16}{25}\right)$ | $\left(\frac{16}{25},\infty\right)$ | |--------------------|---------------|---------------------------------|-------------------------------------| | Sign of $25x - 16$ | _ | - | + | | Sign of x | _ | + | + | | Resulting sign | + | _ | + | $\boxed{\textbf{35}} \ \frac{x^2(x+2)}{(x+2)(x+1)} \leq 0 \quad \Rightarrow \quad \frac{x^2}{x+1} \leq 0 \quad \text{\{we will exclude } x=-2 \text{ since it makes the original expression undefined}\} \quad \Rightarrow \quad \frac{1}{x+1} \leq 0 \quad \text{\{we can divide by } x^2 \text{ since } x^2 \qquad 0 \text{ and we will include } x=0 \text{ since it makes } x^2 \text{ equal to zero and we want all solutions less than } or \ equal \ to \ zero} \quad \Rightarrow \quad x+1 < 0 \quad \text{\{the fraction cannot equal zero and } x+1 \text{ must be negative so that the fraction is negative}\} \quad \Rightarrow \quad x<-1 \qquad \qquad \bigstar \ (-\infty,-2) \cup (-2,-1) \cup \{0\}$ $$\boxed{\textbf{37}} \ \frac{x^2-x}{x^2+2x} \leq 0 \quad \Rightarrow \quad \frac{x(x-1)}{x(x+2)} \leq 0 \quad \Rightarrow \quad \frac{x-1}{x+2} \leq 0 \ \{\text{we will exclude } x=0 \text{ from the solution}\} \ \bigstar \ (-2,0) \cup (0,1]$$ | Interval | $(-\infty, -2)$ | (-2,1) | $(1,\infty)$ | |-----------------|-----------------|--------|--------------| | Sign of $x-1$ | | - | + | | Sign of $x + 2$ | _ | + | + | | Resulting sign | + | _ | + | $$\boxed{\textbf{38}} \ \frac{(x+3)^2(2-x)}{(x+4)(x^2-4)} \leq 0 \quad \Rightarrow \quad \frac{2-x}{(x+4)(x+2)(x-2)} \leq 0 \ \ \{\text{include} \ -3\} \qquad \Rightarrow \quad \frac{1}{(x+4)(x+2)} \geq 0 \ \ \{\text{cancel, change inequality, exclude} \ 2\}$$ | Interval | $(-\infty, -4)$ | (-4, -2) | $(-2,\infty)$ | |-----------------|-----------------|----------|---------------| | Sign of $x + 2$ | _ | | + | | Sign of $x + 4$ | _ | + | + | | Resulting sign | + | _ | + | $$\boxed{39} \frac{x-2}{x^2-3x-10} \quad 0 \quad \Rightarrow \quad \frac{x-2}{(x-5)(x+2)} \geq 0 \ \{x=2 \text{ is a solution since it makes the fraction equal to zero, } x=5$$ and x = -2 are excluded since these values make the fraction undefined} | Interval | $(-\infty, -2)$ | (-2, 2) | (2,5) | $(5,\infty)$ | |-----------------|-----------------|---------|-------|--------------| | Sign of $x-5$ | _ | _ | _ | + | | Sign of $x-2$ | _ | _ | + | + | | Sign of $x + 2$ | _ | + | + | + | | Resulting sign | _ | + | _ | + | $$\boxed{\textbf{40}} \ \frac{x+6}{x^2-7x+12} \le 0 \quad \Rightarrow \quad \frac{x+6}{(x-3)(x-4)} \le 0$$ | -)() | | | | | |-----------------|-----------------|---------|-------|--------------| | Interval | $(-\infty, -6)$ | (-6, 3) | (3,4) | $(4,\infty)$ | | Sign of $x-4$ | _ | _ | _ | + | | Sign of $x-3$ | _ | _ | + | + | | Sign of $x + 6$ | | + | + | + | | | | | | | $\bigstar (-\infty, -6] \cup (3, 4)$ \bigstar $(-\infty, -3) \cup (0, 3)$ $\bigstar (-\infty, -2] \cup \left(-\frac{5}{3}, \infty\right)$ $$\boxed{41} \frac{-3x}{x^2 - 9} > 0 \implies \frac{x}{(x+3)}$$ $$\boxed{41} \frac{-3x}{x^2 - 9} > 0 \quad \Rightarrow \quad \frac{x}{(x+3)(x-3)} < 0 \text{ {divide by } -3}$$ | / | | | | | |-----------------|-----------------|--------|--------|--------------| | Interval | $(-\infty, -3)$ | (-3,0) | (0, 3) | $(3,\infty)$ | | Sign of $x-3$ | _ | _ | _ | + | | Sign of x | _ | _ | + | + | | Sign of $x + 3$ | _ | + | + | + | | Resulting sign | _ | + | _ | + | **42** $$\frac{5x}{16-x^2} < 0 \implies$$ $$\boxed{42} \ \frac{5x}{16 - x^2} < 0 \quad \Rightarrow \quad \frac{x}{(4+x)(4-x)} < 0 \text{ {divide by 5}}$$ | Interval | $(-\infty, -4)$ | (-4,0) | (0,4) | $(4,\infty)$ | |-----------------|-----------------|--------|-------|--------------| | Sign of $4-x$ | + | + | + | _ | | Sign of x | _ | _ | + | + | | Sign of $4 + x$ | _ | + | + | + | | Resulting sign | + | _ | + | _ | 43 $$\frac{x}{2x}$$ $$\frac{\textbf{43}}{\frac{2x-3}{2x-3}} > 2 \quad \Rightarrow \quad \frac{x+1}{2x-3} - 2 > 0 \quad \Rightarrow \quad \frac{x+1-2(2x-3)}{2x-3} > 0 \quad \Rightarrow \quad \frac{x+1-4x+6}{2x-3} >$$ as we did with rational equations because 2x-3 may be positive or negative, and multiplying by it would require solving two inequalities. This method of solution tends to be more difficult than the sign chart method. | Interval | $\left(-\infty, \frac{3}{2}\right)$ | $\left(\frac{3}{2},\frac{7}{3}\right)$ | $\left(\frac{7}{3},\infty\right)$ | |-------------------|-------------------------------------|--|-----------------------------------| | Sign of $-3x + 7$ | + | + | _ | | Sign of $2x - 3$ | _ | + | + | | Resulting sign | _ | + | _ | $$\boxed{44} \ \frac{x-2}{2x+5} \le 4 \quad \Rightarrow \quad$$ $$\boxed{\textbf{44}} \ \frac{x-2}{3x+5} \le 4 \quad \Rightarrow \quad \frac{x-2-4(3x+5)}{3x+5} \le 0 \quad \Rightarrow \quad \frac{-11x-22}{3x+5} \le 0$$ Interval $$(-\infty, -2)$$ $(-2, -\frac{5}{3})$ $(-\frac{5}{3}, \infty)$ Sign of $3x + 5$ — + Sign of $-11x - 22$ + — Resulting sign — + — + Resulting sign **49** $$x^3 > x \implies x^3 - x > 0 \implies x(x^2 - 1) > 0 \implies x(x + 1)(x - 1) > 0$$ | ` ' | • | , , | · · | | |-----------------|-----------------|--------|-------|--------------| | Interval | $(-\infty, -1)$ | (-1,0) | (0,1) | $(1,\infty)$ | | Sign of $x-1$ | _ | _ | _ | + | | Sign of x | _ | _ | + | + | | Sign of $x + 1$ | _ | + | + | + | | Resulting sign | _ | + | _ | + | **50** $x^4 \ge x^2 \implies x^4 - x^2 \ge 0 \implies x^2(x^2 - 1) \ge 0 \implies x^2(x + 1)(x - 1) = 0$. Since $x^2 \ge 0$, x^2 does not need to be included in the sign chart, but 0 must be included in the answer because of the equality. | * (| $-\infty$. | -1 | U | [0] | } U | $[1,\infty]$ |) | |-----|-------------|----|---|-----|-----|--------------|---| | | | | | | | | | \bigstar $(-1,0) \cup (1,\infty)$ | Interval | $(-\infty, -1)$ | (-1, 1) | $(1,\infty)$ | |-----------------|-----------------|---------|--------------| | Sign of $x-1$ | _ | _ | + | | Sign of $x + 1$ | _ | + | + | | Resulting sign | + | _ | + | [51] (a) $|x+5| = 3 \implies x+5 = 3 \text{ or } x+5 = -3 \implies x = -2 \text{ or } x = -8.$ **(b)** |x+5| < 3 has solutions between the values found in part (a), that is, (-8, -2). (c) The solutions of |x+5| > 3 are the portions of the real line that are not in parts (a) and (b), that is, $(-\infty, -8) \cup (-2, \infty)$. **52** (a) $|x-4| < 3 \Rightarrow -3 < x-4 < 3 \Rightarrow 1 < x < 7 \Leftrightarrow (1,7)$. **(b)** |x-4|=3 has solutions at the endpoints of the interval in part (a); that is, at x=1 and x=7. (c) As in Exercise 51(c), |x-4| > 3 has solutions in $(-\infty, 1) \cup (7, \infty)$. **53** We could think of this statement as "the difference between w and 141 is at most 2." In symbols, we have $|w - 141| \le 2$. Intuitively, we know that this inequality must describe the weights from 139 to 143. **54** "r must be within 0.01 centimeter of 1 centimeter" is written as $|r-1| \le 0.01$. **55** We could think of this statement as "the difference between s and 55 is at most 10." In symbols, we have $|s-55| \le 10$. Intuitively, we know that this inequality must describe the speeds from 45 to 65. **56** "V must be 32.1 fluid ounces, plus or minus 0.05 fl. oz." is written as $|V - 32.1| \le 0.05$. **57** $M = \frac{f}{f-p}$ • We want to know what condition will assure us that an object's image is at least 3 times as large as the object, or, equivalently, when $M \ge 3$. M = 3 { and f = 6} $\Rightarrow \frac{6}{6-p} = 3 \Rightarrow 6 \ge 18-3p$ {since 6-p>0, we can multiply by 6-p and not change the direction of the inequality} $\Rightarrow 3p \ge 12 \Rightarrow p \ge 4$, but p < 6 since p < f. Thus, $4 \le p < 6$. $\boxed{\textbf{58}} \ c = \frac{3.5t}{t+1} \quad \bullet \quad c > 1.5 \quad \Rightarrow \quad \frac{3.5t}{t+1} > 1.5 \quad \Rightarrow \quad \{t+1>0\} \ 3.5t > 1.5t + 1.5 \quad \Rightarrow \quad 2t > \frac{3}{2} \quad \Rightarrow \quad t > \frac{3}{4} \ \text{hr}$ **59** Let x denote the number of years before A becomes more economical than B. The costs are the initial costs plus the yearly costs times the number of years. $Cost_A < Cost_B \Rightarrow 100,000 + 8000x < 80,000 + 11,000x \Rightarrow 20,000 < 3000x \Rightarrow x > \frac{20}{3}, \text{ or } 6\frac{2}{3} \text{ yr.}$ $$\begin{array}{ll} {\color{red} \overline{\bf 60}} \text{ Let } t \text{ denote the time in years from the present. } \operatorname{Cost}_{\mathrm{B}} < \operatorname{Cost}_{\mathrm{A}} \quad \Rightarrow \\ \operatorname{Purchase}_{\mathrm{B}} + \operatorname{Insurance}_{\mathrm{B}} + \operatorname{Gas}_{\mathrm{B}} < \operatorname{Purchase}_{\mathrm{A}} + \operatorname{Insurance}_{\mathrm{A}} + \operatorname{Gas}_{\mathrm{A}} \quad \Rightarrow \\ 24,000 + 1200t + \frac{15,000}{50} \cdot 3t < 20,000 + 1000t + \frac{15,000}{30} \cdot 3t \quad \Rightarrow \\ \end{array}$$ $$24{,}000 + 2100t <
20{,}000 + 2500t \quad \Rightarrow \quad 4000 < 400t \quad \Rightarrow \quad t > 10 \text{ yr}.$$ **[61]** $$s > 9$$ ⇒ $-16t^2 + 24t + 1 > 9$ ⇒ $-16t^2 + 24t - 8 > 0$ ⇒ $2t^2 - 3t + 1 < 0$ {divide by -8 } ⇒ $(2t - 1)(t - 1) < 0$ {use a sign chart} ⇒ $\frac{1}{2} < t < 1$. The dog is more than 9 ft off the ground for $1 - \frac{1}{2} = \frac{1}{2}$ sec. **[62]** $$s \ge 1536 \implies -16t^2 + 320t \ge 1536 \implies -16t^2 + 320t - 1536 \ge 0 \implies t^2 - 20t + 96 \le 0 \text{ {divide by } } -16\text{} \implies (t - 8)(t - 12) \le 0 \text{ {use a sign chart}} \implies 8 \le t \le 12$$ $$\begin{array}{lll} {\bf \overline{63}} \; d < 75 & \Rightarrow & v + \frac{1}{20} v^2 < 75 \; \{ \text{multiply by } 20 \} & \Rightarrow & 20 v + v^2 < 1500 & \Rightarrow & v^2 + 20 v - 1500 < 0 & \Rightarrow \\ & & (v + 50)(v - 30) < 0 \; \{ \text{use a sign chart} \} & \Rightarrow & -50 < v < 30 & \Rightarrow & 0 \le v < 30 \; \{ \text{since } v \ge 0 \} \\ \end{array}$$ **64** $$M$$ 45 \Rightarrow $-\frac{1}{30}v^2 + \frac{5}{2}v \ge 45$ {multiply by -30 } \Rightarrow $v^2 - 75v \le -1350$ \Rightarrow $v^2 - 75v + 1350 \le 0 \Rightarrow (v - 30)(v - 45) \le 0$ {use a sign chart} \Leftrightarrow $30 \le v \le 45$ - **65** (a) 5 ft 9 in = 69 in. In a 40 year period, a person's height will decrease by $40 \times 0.024 = 0.96$ in ≈ 1 in. The person will be approximately one inch shorter, or 5 ft 8 in. at age 70. - **(b)** 5 ft 6 in = 66 in. In 20 years, a person's height (h = 66) will change by $0.024 \times 20 = 0.48$ in. Thus, $66 0.48 \le h \le 66 + 0.48 \implies 65.52 \le h \le 66.48$. - **67** The numerator is equal to zero when x=2,3 and the denominator is equal to zero when $x=\pm 1$. From the table, the expression $Y_1=\frac{(2-x)(3x-9)}{(1-x)(x+1)}$ is positive when $x\in [-2,-1)\cup (1,2)\cup (3,3.5]$. See the table on the left. | x | Y ₁ | \boldsymbol{x} | \mathbf{Y}_1 | |------|----------------|------------------|----------------| | -2.0 | 20 | 1.0 | ERROR | | -1.5 | 37.8 | 1.5 | 1.8 | | -1.0 | ERROR | 2.0 | 0 | | -0.5 | -35 | 2.5 | -0.1429 | | 0.0 | -18 | 3.0 | 0 | | 0.5 | -15 | 3.5 | 0.2 | | x | Y_1 | \boldsymbol{x} | Y_1 | |------|--------|------------------|--------| | -3.5 | 30.938 | 1.0 | 36 | | -3.0 | 0 | 1.5 | 19.688 | | -2.5 | -7.313 | 2.0 | 0 | | -2.0 | 0 | 2.5 | -18.56 | | -1.5 | 14.438 | 3.0 | -30 | | -1.0 | 30 | 3.5 | -26.81 | | -0.5 | 42.188 | 4.0 | 0 | | 0.0 | 48 | 4.5 | 60.938 | | 0.5 | 45.938 | 5.0 | 168 | **68** By using a table it can be shown that the expression is equal to zero when x = -3, -2, 2, 4. The expression $Y_1 = x^4 - x^3 - 16x^2 + 4x + 48$ is negative when $x \in (-3, -2) \cup (2, 4)$. See the table on the right. ## Chapter 1 Review Exercises - 1 If $x \le -3$, then $x + 3 \le 0$, and |x + 3| = -(x + 3) = -x 3. - **2** If 2 < x < 3, then x 2 > 0 $\{x 2 \text{ is positive}\}$ and x 3 < 0 $\{x 3 \text{ is negative}\}$. Thus, (x 2)(x 3) < 0{positive times negative is negative}, and since the absolute value of an expression that is negative is the negative of the expression, |(x-2)(x-3)| = -(x-2)(x-3), or, equivalently, (2-x)(x-3). $$\boxed{\mathbf{3}} \quad \left(\frac{a^{2/3}b^{3/2}}{a^2b}\right)^6 = \frac{a^4b^9}{a^{12}b^6} = \frac{b^3}{a^8}$$ $$(-2p^2q)^3 \left(\frac{p}{4q^2}\right)^2 = (-8p^6q^3) \left(\frac{p^2}{16q^4}\right) = -\frac{p^8}{2q}$$ $$\boxed{\mathbf{5}} \quad \left(\frac{xy^{-1}}{\sqrt{z}}\right)^4 \div \left(\frac{x^{1/3}y^2}{z}\right)^3 = \frac{x^4y^{-4}}{z^2} \cdot \frac{z^3}{xy^6} = \frac{x^3z}{y^{10}} \qquad \boxed{\mathbf{6}} \quad \left(\frac{-64x^3}{z^6y^9}\right)^{2/3} = \frac{\left(\sqrt[3]{-64}\right)^2x^2}{z^4y^6} = \frac{16x^2}{z^4y^6} \frac{16x^2}{z^4y^6$$ $$\boxed{7} \quad \left[\left(a^{2/3}b^{-2} \right)^3 \right]^{-1} = \left(a^2b^{-6} \right)^{-1} = a^{-2}b^6 = \frac{b^6}{a^2}$$ $$\boxed{8} \quad x^{-2} - y^{-1} = \frac{1}{x^2} - \frac{1}{y} = \frac{y - x^2}{x^2y}$$ **8** $$x^{-2} - y^{-1} = \frac{1}{x^2} - \frac{1}{y} = \frac{y - x^2}{x^2 y}$$ $$\boxed{\textbf{10}} \ \sqrt[4]{(-4a^3b^2c)^2} = \sqrt[4]{16a^6b^4c^2} = \sqrt[4]{2^4a^4b^4} \ \sqrt[4]{a^2c^2} = 2ab \ \sqrt[4]{(ac)^2} = 2ab \ \sqrt{ac}$$ $$\boxed{13} \frac{\sqrt{12x^4y}}{\sqrt{3x^2y^7}} = \sqrt{\frac{12x^4y}{3x^2y^7}} = \sqrt{\frac{4x^2}{y^6}} = \frac{2x}{y^3}$$ $$\boxed{14} \ \frac{3+\sqrt{x}}{3-\sqrt{x}} = \frac{3+\sqrt{x}}{3-\sqrt{x}} \cdot \frac{3+\sqrt{x}}{3+\sqrt{x}} = \frac{x+6\sqrt{x}+9}{9-x}$$ **15** $$(3x^3 - 4x^2 + x - 6) + (x^4 - 2x^3 + 3x^2 + 5) = x^4 + x^3 - x^2 + x - 1$$ **16** $$(x+4)(x+3) - (2x-3)(x-5) = (x^2+7x+12) - (2x^2-13x+15) = -x^2+20x-3$$ $$\boxed{17} (3a - 5b)(4a + 7b) = 12a^2 + 21ab - 20ab - 35b^2 = 12a^2 + ab - 35b^2$$ $$\boxed{\textbf{18}} (4r^2 - 3s)^2 = (4r^2)^2 - 2(4r^2)(3s) + (3s)^2 = 16r^4 - 24r^2s + 9s^2$$ $$\boxed{\textbf{19}} (13a^2 + 5b)(13a^2 - 5b) = (13a^2)^2 - (5b)^2 = 169a^4 - 25b^2$$ **20** $$(2a+b)^3 = (2a)^3 + 3(2a)^2(b) + 3(2a)(b)^2 + (b)^3 = 8a^3 + 12a^2b + 6ab^2 + b^3$$ $$\boxed{\textbf{21}} (3x + 2y)^2 (3x - 2y)^2 = \left[(3x + 2y)(3x - 2y) \right]^2 = (9x^2 - 4y^2)^2 = 81x^4 - 72x^2y^2 + 16y^4$$ **22** $$(a+b+c+d)^2 = a^2+b^2+c^2+d^2+2(ab+ac+ad+bc+bd+cd)$$ $$23 60xw + 50w = 10w(6x + 5)$$ **24** $$16a^4 + 24a^2b^2 + 9b^4 = (4a^2 + 3b^2)(4a^2 + 3b^2) = (4a^2 + 3b^2)^2$$ **25** $$8x^3 + 64y^3 = 8(x^3 + 8y^3) = 8[(x)^3 + (2y)^3] = 8(x + 2y)(x^2 - 2xy + 4y^2)$$ **26** $$u^3v^4 - u^6v = u^3v(v^3 - u^3) = u^3v(v - u)(v^2 + uv + u^2)$$ $$\boxed{\mathbf{27}} \ p^8 - q^8 = \left(p^4\right)^2 - \left(q^4\right)^2 = \left(p^4 + q^4\right) \left(p^4 - q^4\right) = \left(p^4 + q^4\right) \left(p^2 + q^2\right) \left(p^2 - q^2\right) \\ = \left(p^4 + q^4\right) \left(p^2 + q^2\right) \left(p + q\right) \left(p - q\right)$$ **28** $$x^4 - 12x^3 + 36x^2 = x^2(x^2 - 12x + 36) = x^2(x - 6)(x - 6) = x^2(x - 6)^2$$ **29** $$x^2 - 49y^2 - 14x + 49 = (x^2 - 14x + 49) - 49y^2 = (x - 7)^2 - (7y)^2 = (x - 7 + 7y)(x - 7 - 7y)$$ $$\begin{array}{ll} \boxed{\textbf{30}} \ \ x^5 - 4x^3 + 8x^2 - 32 = x^3 \big(x^2 - 4 \big) + 8 \big(x^2 - 4 \big) = \big(x^3 + 8 \big) \big(x^2 - 4 \big) \\ = \big[\big(x + 2 \big) \big(x^2 - 2x + 4 \big) \big] \left[(x + 2)(x - 2) \right] = (x - 2)(x + 2)^2 \big(x^2 - 2x + 4 \big) \end{aligned}$$ $$\boxed{\textbf{31}} \ \frac{6}{4x-5} - \frac{15}{10x+1} = \frac{6(10x+1) - 15(4x-5)}{(4x-5)(10x+1)} = \frac{60x+6-60x+75}{(4x-5)(10x+1)} = \frac{81}{(4x-5)(10x+1)}$$ $$\boxed{\mathbf{32}} \ \frac{7}{x+2} + \frac{3x}{(x+2)^2} - \frac{5}{x} = \frac{7(x)(x+2) + 3x(x) - 5(x+2)^2}{x(x+2)^2} = \frac{7x^2 + 14x + 3x^2 - 5x^2 - 20x - 20}{x(x+2)^2} = \frac{5x^2 -$$ $$\frac{5x^2 - 6x - 20}{x(x+2)^2}$$ 33 $$\frac{x+x^{-2}}{1+x^{-2}} = \frac{x+\frac{1}{x^2}}{1+\frac{1}{x^2}} = \frac{\left(x+\frac{1}{x^2}\right)\cdot x^2}{\left(1+\frac{1}{x^2}\right)\cdot x^2} = \frac{x^3+1}{x^2+1}$$. We could factor the numerator, but since it doesn't lead to a reduction of the fraction, we leave it in this form. $$\boxed{\textbf{34}} \left(a^{-1} + b^{-1} \right)^{-1} = \left(\frac{1}{a} + \frac{1}{b} \right)^{-1} = \left(\frac{b+a}{ab} \right)^{-1} = \left(\frac{ab}{a+b} \right)^1 = \frac{ab}{a+b}$$ $$\boxed{\mathbf{35}} \frac{\frac{x}{x+2} - \frac{4}{x+2}}{x-3 - \frac{6}{x+2}} = \frac{\frac{x-4}{x+2}}{\frac{(x-3)(x+2)-6}{x+2}} = \frac{x-4}{(x^2-x-6)-6} = \frac{x-4}{x^2-x-12} = \frac{x-4}{(x+3)(x-4)} = \frac{1}{x+3}$$ $$\frac{(4-x^2)(\frac{1}{3})(6x+1)^{-2/3}(6) - (6x+1)^{1/3}(-2x)}{(4-x^2)^2} = \frac{2(6x+1)^{-2/3}[(4-x^2) + x(6x+1)]}{(4-x^2)^2} \\ = \frac{2(4-x^2+6x^2+x)}{(6x+1)^{2/3}(4-x^2)^2} = \frac{2(5x^2+x+4)}{(6x+1)^{2/3}(4-x^2)^2}$$ $$\boxed{ \frac{3\mathbf{7}}{5x+7} = \frac{6x+11}{10x-3} } \cdot (5x+7)(10x-3) \quad \Rightarrow \quad (3x+1)(10x-3) = (6x+11)(5x+7) \quad \Rightarrow \quad 30x^2+x-3 = 30x^2+97x+77 \quad \Rightarrow \quad -96x = 80 \quad \Rightarrow \quad x = -\frac{5}{2} = \frac{1}{2} \frac{1}{$$ **38** $$2x^2 + 7x - 15 = 0 \implies (x+5)(2x-3) = 0 \implies x = -5, \frac{3}{2}$$ $$\boxed{\textbf{39}} \ x(3x+4) = 2 \quad \Rightarrow \quad 3x^2 + 4x - 2 = 0 \quad \Rightarrow \quad x = \frac{-4 \pm \sqrt{16 + 24}}{6} = \frac{-4 \pm 2\sqrt{10}}{6} = -\frac{2}{3} \pm \frac{1}{3}\sqrt{10}$$ **40** $$4x^4 - 37x^2 + 75 = 0 \implies (4x^2 - 25)(x^2 - 3) \implies x^2 = \frac{25}{4}, 3 \implies x = \pm \frac{5}{2}, \pm \sqrt{3}$$ $$\boxed{\textbf{41}} \ 20x^3 + 8x^2 - 55x - 22 = 0 \quad \Rightarrow \quad 4x^2(5x+2) - 11(5x+2) = 0 \quad \Rightarrow \quad (4x^2 - 11)(5x+2) = 0 \quad \Rightarrow \quad x^2 = \frac{11}{4} \text{ or } x = -\frac{2}{5} \quad \Rightarrow \quad x = \pm \frac{1}{2}\sqrt{11}, -\frac{2}{5}$$ **42** $$|4x-1|=7 \Rightarrow 4x-1=7 \text{ or } 4x-1=-7 \Rightarrow 4x=8 \text{ or } 4x=-6 \Rightarrow x=2 \text{ or } x=-\frac{3}{2}$$ $$\boxed{44} \left[\frac{1}{x} + 6 = \frac{5}{\sqrt{x}} \right] \cdot x \quad \Rightarrow \quad 1 + 6x = 5\sqrt{x} \quad \Rightarrow$$ $6x - 5\sqrt{x} + 1 = 0$ {factoring or substituting would be appropriate} \Rightarrow $$(2\sqrt{x}-1)(3\sqrt{x}-1)=0 \Rightarrow \sqrt{x}=\frac{1}{2},\frac{1}{3} \Rightarrow x=(\frac{1}{2})^2,(\frac{1}{3})^2 \Rightarrow x=\frac{1}{4},\frac{1}{9}$$ **Check** $$x = \frac{1}{4}$$: LS = 4 + 6 = 10; RS = $5/\frac{1}{2} = 10 \implies x = \frac{1}{4}$ is a solution. **Check** $x = \frac{1}{9}$: LS = 9 + 6 = 15; RS = $5/\frac{1}{3} = 15 \implies x = \frac{1}{9}$ is a solution. $$\boxed{\textbf{45}} \sqrt{7x+2} + x = 6 \quad \Rightarrow \quad \left(\sqrt{7x+2}\right)^2 = (6-x)^2 \quad \Rightarrow \quad 7x+2 = 36-12x+x^2 \quad \Rightarrow \\ x^2 - 19x + 34 = 0 \quad \Rightarrow \quad (x-2)(x-17) = 0 \quad \Rightarrow \quad x = 2 \text{ and } 17 \text{ is an extraneous solution.}$$ $$\boxed{\textbf{46}} \sqrt{3x+1} - \sqrt{x+4} = 1 \quad \Rightarrow \quad \sqrt{3x+1} = 1 + \sqrt{x+4} \quad \Rightarrow \quad \left(\sqrt{3x+1}\right)^2 = \left(1 + \sqrt{x+4}\right)^2 \quad \Rightarrow \quad 3x+1 = 1 + 2\sqrt{x+4} + x + 4 \quad \Rightarrow \quad 2\sqrt{x+4} = 2x - 4 \quad \Rightarrow \quad \sqrt{x+4} = x - 2 \quad \Rightarrow \quad
\left(\sqrt{x+4}\right)^2 = (x-2)^2 \quad \Rightarrow \quad x + 4 = x^2 - 4x + 4 \quad \Rightarrow \quad x^2 - 5x = 0 \quad \Rightarrow \quad x(x-5) = 0 \quad \Rightarrow \quad x = 0, 5.$$ Check x = 0: LS = $1 - 2 = -1 \neq RS$ $\Rightarrow x = 0$ is an extraneous solution. Check x = 5: LS = 4 - 3 = 1 = RS $\Rightarrow x = 5$ is a solution. **47** $$10 - 7x < 4 + 8x \Rightarrow -15x < -6 \Rightarrow x > \frac{2}{5} \Leftrightarrow (\frac{2}{5}, \infty)$$ $$\boxed{\textbf{48}} \left[-\frac{1}{2} < \frac{2x+3}{5} < \frac{3}{2} \right] \cdot 10 \quad \Rightarrow \quad -5 < 4x+6 < 15 \quad \Rightarrow \quad -11 < 4x < 9 \quad \Rightarrow \quad -\frac{11}{4} < x < \frac{9}{4} \quad \Leftrightarrow \quad \left(-\frac{11}{4}, \frac{9}{4} \right) = \frac{1}{4}$$ $$\boxed{49} \ \frac{7}{10x+3} < 0 \quad \Rightarrow \quad 10x+3 < 0 \ \{\text{since } 7 > 0\} \quad \Rightarrow \quad x < -\frac{3}{10} \ \Leftrightarrow \ \left(-\infty, -\frac{3}{10}\right)$$ $$\boxed{\textbf{50}} \ |4x+7| < 21 \quad \Rightarrow \quad -21 < 4x+7 < 21 \quad \Rightarrow \quad -28 < 4x < 14 \quad \Rightarrow \quad -7 < x < \frac{7}{2} \quad \Leftrightarrow \quad \left(-7, \frac{7}{2}\right)$$ $$\boxed{\textbf{51}} \ \ 2|3-x|+1>5 \quad \Rightarrow \quad 2|3-x|>4 \quad \Rightarrow \quad |3-x|>2 \quad \Rightarrow \quad 3-x>2 \ \text{or} \ 3-x<-2 \quad \Rightarrow \quad |3-x|>3 \ \ \text{or} \ 3-x<-2 \ \ \Rightarrow \quad |3-x|>3 \ \ \text{or} \ 3-x<-2 \ \ \Rightarrow \quad |3-x|>3 \ \ \text{or} \ 3-x<-2 \ \ \Rightarrow \quad |3-x|>3 \ \ \text{or} \ 3-x<-2 \ \ \Rightarrow \quad |3-x|>3 \ \ \text{or} \ 3-x<-2 \ \ \Rightarrow \quad |3-x|>3 \ \ \text{or} \ 3-x<-2 \ \ \Rightarrow \quad |3-x|>3 \ \ \text{or} \ 3-x<-2 \ \ \Rightarrow \quad |3-x|>3 \ \ \text{or} \ 3-x<-2 \ \ \Rightarrow \quad |3-x|>3 \ \ \text{or} \ 3-x<-2 \ \ \Rightarrow \quad |3-x|>3 \ \ \text{or} \ 3-x<-3 3-x<-3$$ $$1 > x \text{ or } 5 < x \quad \Rightarrow \quad x < 1 \text{ or } x > 5 \quad \Leftrightarrow \quad (-\infty, 1) \cup (5, \infty)$$ **52** $$|16 - 3x| \ge 5$$ \Rightarrow $16 - 3x \ge 5$ or $16 - 3x \le -5$ \Rightarrow $-3x \ge -11$ or $-3x \le -21$ \Rightarrow $$x \le \frac{11}{3} \text{ or } x \ge 7 \iff \left(-\infty, \frac{11}{3}\right] \cup [7, \infty)$$ **53** $$10x^2 + 11x > 6 \implies 10x^2 + 11x - 6 > 0 \implies (2x+3)(5x-2) > 0$$ $$\bigstar \left(-\infty, -\frac{3}{2}\right) \cup \left(\frac{2}{5}, \infty\right)$$ | | | - | | |------------------|-----------------------------------|---|-----------------------------------| | Interval | $\left(-\infty,- rac{3}{2} ight)$ | $\left(-\frac{3}{2},\frac{2}{5}\right)$ | $\left(\frac{2}{5},\infty\right)$ | | Sign of $5x-2$ | | _ | + | | Sign of $2x + 3$ | _ | + | + | | Resulting sign | + | _ | + | **54** $$x(x-3) \le 18 \implies x^2 - 3x - 18 \le 0 \implies (x-6)(x+3) \le 0$$ $$\bigstar [-3, 6]$$ | Interval | $(-\infty, -3)$ | (-3, 6) | $(6,\infty)$ | |-----------------|-----------------|---------|--------------| | Sign of $x-6$ | _ | _ | + | | Sign of $x + 3$ | _ | + | + | | Resulting sign | + | | + | $$\boxed{55} \ \frac{x^2(3-x)}{x+2} \le 0 \quad \Rightarrow \quad \frac{3-x}{x+2} \le 0 \ \left\{ x^2 \ge 0, \text{ include } 0 \right\}$$ $(-\infty,-2)\cup\{0\}\cup[3,\infty)$ | Interval | $(-\infty, -2)$ | (-2, 3) | $(3,\infty)$ | |----------------|-----------------|---------|--------------| | Sign of $3-x$ | + | + | _ | | Sign of $x+2$ | _ | + | + | | Resulting sign | _ | + | _ | $$\boxed{\textbf{56}} \ \frac{x^2 - x - 2}{x^2 + 4x + 3} \leq 0 \quad \Rightarrow \quad \frac{(x - 2)(x + 1)}{(x + 1)(x + 3)} \leq 0 \quad \Rightarrow \quad \frac{x - 2}{x + 3} \leq 0 \ \{\text{exclude} \ -1\}$$ $\bigstar (-3,-1) \cup (-1,2]$ | () | | | | |-----------------|-----------------|---------|--------------| | Interval | $(-\infty, -3)$ | (-3, 2) | $(2,\infty)$ | | Sign of $x-2$ | | _ | + | | Sign of $x + 3$ | _ | + | + | | Resulting sign | + | _ | + | $$\frac{3}{2x+3} < \frac{1}{x-2} \Rightarrow \frac{3}{2x+3} - \frac{1}{x-2} < 0 \Rightarrow \frac{3(x-2) - 1(2x+3)}{(2x+3)(x-2)} < 0 \Rightarrow \frac{3x-6-2x-3}{(2x+3)(x-2)} < 0 \Rightarrow \frac{x-9}{(2x+3)(x-2)} < 0$$ $$\bigstar \left(-\infty, -\frac{3}{2}\right) \cup \left(2, 9\right)$$ | (2x+9)(x-2) | | | | | | |------------------|-------------------------------------|-------------------------------|-------|--------------|--| | Interval | $\left(-\infty,-\frac{3}{2}\right)$ | $\left(-\frac{3}{2},2\right)$ | (2,9) | $(9,\infty)$ | | | Sign of $x-9$ | _ | _ | _ | + | | | Sign of $x-2$ | _ | _ | + | + | | | Sign of $2x + 3$ | _ | + | + | + | | | Resulting sign | _ | + | _ | + | | $$\boxed{\textbf{58}} \ \frac{x+2}{x^2-25} \le 0 \quad \Rightarrow \quad \frac{x+2}{(x+5)(x-5)} \le 0$$ $$\bigstar$$ $(-\infty, -5) \cup [-2, 5)$ | | , | , , | , , | , , | |-----------------|-----------------|----------|---------|--------------| | Interval | $(-\infty, -5)$ | (-5, -2) | (-2, 5) | $(5,\infty)$ | | Sign of $x-5$ | _ | _ | _ | + | | Sign of $x+2$ | _ | _ | + | + | | Sign of $x + 5$ | _ | + | + | + | | Resulting sign | _ | + | _ | + | $$\boxed{\textbf{59}} \ x^3 > x^2 \quad \Rightarrow \quad x^2(x-1) > 0 \ \{x^2 \ge 0\} \quad \Rightarrow \quad x-1 > 0 \quad \Rightarrow \quad x > 1 \ \Leftrightarrow \ (1,\infty)$$ **60** $$(x^2 - x)(x^2 - 5x + 6) < 0 \implies x(x - 1)(x - 2)(x - 3) < 0$$ \bigstar (0,1) \cup (2,3) | Interval | $(-\infty,0)$ | (0,1) | (1, 2) | (2,3) | $(3,\infty)$ | |----------------|---------------|-------|--------|-------|--------------| | Sign of $x-3$ | _ | ı | _ | ı | + | | Sign of $x-2$ | _ | _ | _ | + | + | | Sign of $x-1$ | _ | _ | + | + | + | | Sign of x | _ | + | + | + | + | | Resulting sign | + | _ | + | _ | + | **61** $$P+N=\frac{C+2}{C}$$ \Rightarrow $C(P+N)=C+2$ \Rightarrow $CP+CN=C+2$ \Rightarrow $$CP + CN - C = 2 \implies C(P + N - 1) = 2 \implies C = \frac{2}{P + N - 1}$$ **[63]** $$F = \frac{\pi P R^4}{8VL} \quad \Rightarrow \quad R^4 = \frac{8FVL}{\pi P} \quad \Rightarrow \quad R = \pm \sqrt[4]{\frac{8FVL}{\pi P}} \quad \Rightarrow \quad R = \sqrt[4]{\frac{8FVL}{\pi P}} \text{ since } R > 0$$ Since r>0, we must use the plus sign, and $r=\frac{-\pi hR+\sqrt{12\pi hV-3\pi^2h^2R^2}}{2\pi h}$ **65** $$(5+8i)^2 = 5^2 + 2(5)(8i) + (8i)^2 = (25-64) + 80i = -39 + 80i$$ $$\boxed{\textbf{66}} \ \frac{1}{9 - \sqrt{-4}} = \frac{1}{9 - 2i} = \frac{1}{9 - 2i} \cdot \frac{9 + 2i}{9 + 2i} = \frac{9 + 2i}{81 + 4} = \frac{9}{85} + \frac{2}{85}i$$ $$\boxed{67} \frac{6-3i}{2+7i} = \frac{6-3i}{2+7i} \cdot \frac{2-7i}{2-7i} = \frac{(12-21)+(-42-6)i}{4+49} = -\frac{9}{53} - \frac{48}{53}i$$ $$\boxed{\textbf{68}} \ \frac{24 - 8i}{4i} = \frac{4(6 - 2i)}{4i} = \frac{6 - 2i}{i} \cdot \frac{-i}{-i} = \frac{-6i + 2i^2}{-i^2} = \frac{-2 - 6i}{1} = -2 - 6i$$ **69** Let P denote the principal that will be invested, and r the yield rate of the stock fund. $Income_{stocks} - 28\%$ federal tax - 7% state tax = $Income_{bonds}$ \Rightarrow $$(Pr) - 0.28(Pr) - 0.07(Pr) = 0.07186P \; \{ \text{divide by } P \} \quad \Rightarrow \quad 1r - 0.28r - 0.07r = 0.07186 \quad \Rightarrow \\ 0.65r = 0.07186 \quad \Rightarrow \quad r = \frac{0.07186}{0.65} \quad \Rightarrow \quad r \approx 0.11055, \, \text{or, } 11.055\%.$$ **70** Let x denote the number of cm³ of gold. Grams_{gold} + Grams_{silver} = Grams_{total} \Rightarrow $$x(19.3) + (5-x)(10.5) = 80 \Rightarrow 19.3x + 52.5 - 10.5x = 80 \Rightarrow 8.8x = 27.5 \Rightarrow x = 3.125.$$ The number of grams of gold is $19.3x = 60.3125 \approx 60.3$. **71** Let x denote the number of ounces of the vegetable portion, 10 - x the number of ounces of meat. $$\begin{aligned} \text{Protein}_{\text{vegetable}} + \text{Protein}_{\text{meat}} &= \text{Protein}_{\text{total}} \quad \Rightarrow \quad \frac{1}{2}(x) + 1(10 - x) = 7 \quad \Rightarrow \quad \frac{1}{2}x + 10 - x = 7 \quad \Rightarrow \\ & -\frac{1}{2}x = -3 \quad \Rightarrow \quad x = 6. \ \text{Use 6 oz of vegetables and 4 oz of meat.} \end{aligned}$$ **72** Let x denote the number of gallons of 20% solution, 120 - x the number of gallons of 50% solution. $$20(x) + 50(120 - x) = 30(120)$$ {all in %} $\Rightarrow 20x + 6000 - 50x = 3600 \Rightarrow 2400 = 30x \Rightarrow x = 80.$ Use 80 gal of the 20% solution and 40 gal of the 50% solution. **73** Let x = the amount of copper they have to mix with 140 kg of zinc to make brass. $Copper_{amount\ put\ in} = Copper_{amount\ in\ final\ product} \ \Rightarrow$ $$x = 0.65(x + 140)$$ \Rightarrow $x = 0.65x + 91$ \Rightarrow $0.35x = 91$ \Rightarrow $x = \frac{91}{0.35} = 260 \text{ kg}$ **74** Let x denote the number of hours needed to fill an empty bin. Using the hourly rates, $$\left[\frac{1}{2} - \frac{1}{5} = \frac{1}{x}\right] \cdot 10x \implies 5x - 2x = 10 \implies 3x = 10 \implies$$ $x=\frac{10}{3}$ hr. Since the bin was half-full at the start, $\frac{1}{2}x=\frac{1}{2}\cdot\frac{10}{3}=\frac{5}{3}$ hr, or, 1 hr 40 min. **75** (a) The eastbound car has distance 20t and the southbound car has distance (-2+50t). $$d^2 = (20t)^2 + (-2 + 50t)^2 \quad \Rightarrow \quad d^2 = 400t^2 + 4 - 200t + 2500t^2 \quad \Rightarrow \quad d = \sqrt{2900t^2 - 200t + 4}$$ **(b)** $$104 = \sqrt{2900t^2 - 200t + 4} \implies 10,816 = 2900t^2 - 200t + 4 \implies 2900t^2 - 200t - 10,812 = 0 \implies 725t^2 - 50t - 2703 = 0 \text{ {divide by 4}} \implies t = \frac{50 \pm \sqrt{7,841,200}}{1450} \text{ {$t > 0$}} = \frac{5 + 2\sqrt{19,603}}{145} \approx 1.97, \text{ or approximately $11:58 a.m.}$$ **76** Let l and w denote the length and width, respectively. $3l + 6w = 270 \implies 6w = 270 - 3l \implies w = 45 - \frac{1}{2}l$. The total area is to be $10 \cdot 100 = 1000$ ft². Area = $lw \implies 1000 = l\left(45 - \frac{1}{2}l\right) \implies 1000 = 45l - \frac{1}{2}l^2 \implies l^2 - 90l + 2000 = 0 \implies (l - 40)(l - 50) = 0 \implies l = 40,50$ and w = 25,20. There are two arrangements: $40 \text{ ft} \times 25 \text{ ft}$ and $50 \text{ ft} \times 20 \text{ ft}$. $\boxed{77}$ Let x denote the length of one
side of an end. (a) $$V = lwh \implies 48 = 6 \cdot x \cdot x \implies x^2 = 8 \implies x = 2\sqrt{2} \text{ ft}$$ **(b)** $$S = lw + 2wh + 2lh \implies 44 = 6x + 2(x^2) + 2(6x) \implies 44 = 2x^2 + 18x \implies$$ $$x^{2} + 9x - 22 = 0 \implies (x+11)(x-2) = 0 \implies x = 2 \text{ ft}$$ $$\boxed{\textbf{78}} \ pv = 200 \quad \Rightarrow \quad v = \frac{200}{p}. \ \ 25 \leq v \leq 50 \quad \Rightarrow \quad 25 \leq \frac{200}{p} \leq 50 \quad \Rightarrow \quad \frac{1}{25} \quad \frac{p}{200} \quad \frac{1}{50} \quad \Rightarrow \quad 8 \geq p \geq 4 \quad \Rightarrow \quad 4 \leq p \leq 8$$ **79** Let x denote the amount of yearly business. Pay_B > Pay_A \Rightarrow \$40,000 + 0.20x > \$50,000 + 0.10x \Rightarrow $$0.10x > \$10,000 \Rightarrow x > \$100,000$$ $$\boxed{\textbf{80}} \ v > 1100 \quad \Rightarrow \quad 1087 \sqrt{\frac{T}{273}} > 1100 \quad \Rightarrow \quad \sqrt{\frac{T}{273}} > \frac{1100}{1087} \quad \Rightarrow \quad \frac{T}{273} > \frac{1100^2}{1087^2} \quad \Rightarrow \quad T > \frac{273 \cdot 1100^2}{1087^2} \quad \Rightarrow \quad T > 279.57 \ \text{K}$$ **81** Let x denote the number of trees over 24. Then 24 + x represents the total number of trees planted per acre, and 600 - 12x represents the number of apples per tree. Hence, 36 to 38 trees per acre should be planted. **82** Let x denote the number of \$25 increases in rent. Then the number of occupied apartments is 218 - 5x and the rent per apartment is 940 + 25x. Hence, the rent charged should be \$990 to \$1040. **83** The y-values are increasing slowly and can best be described by equation (3), $y = 3\sqrt{x - 0.5}$. ### Chapter 1 Discussion Exercises $$\boxed{\textbf{1}} \quad \frac{\$1 \text{ in cash back}}{100 \text{ points}} \times \frac{1 \text{ point}}{\$10 \text{ charged}} = \frac{\$1 \text{ in cash back}}{\$1000 \text{ charged}} = 0.001, \text{ or } 0.1\%.$$ - **2** Squaring the right side gives us $(a+b)^2 = a^2 + 2ab + b^2$. Squaring the left side gives us $a^2 + b^2$. Now $a^2 + 2ab + b^2$ will equal $a^2 + b^2$ only if 2ab = 0. The expression 2ab equals zero only if either a = 0 or b = 0. - We first need to determine the term that needs to be added and subtracted. Since $25 = \underline{5}^2$, it makes sense to add and subtract $2 \cdot \underline{5}x = 10x$. Then we will obtain the square of a binomial—i.e., $(x^2 + 10x + 25) - 10x = (x + 5)^2 - 10x$. We can now factor this expression as the difference of two squares, $$(x+5)^2 - 10x = (x+5)^2 - \left(\sqrt{10x}\right)^2 = \left(x+5+\sqrt{10x}\right)\left(x+5-\sqrt{10x}\right).$$ - $\boxed{\textbf{4}}$ The expression $\frac{1}{x+1}$ can be evaluated at x=1, whereas the expression $\frac{x-1}{x^2-1}$ is undefined at x=1. - Try $\frac{3x^2 4x + 7}{8x^2 + 9x 100}$ with $x = 10^3$, 10^4 , and 10^5 . You get approximately 0.374, 0.3749, and 0.37499. The numbers seem to be getting closer to 0.375, which is the decimal representation for $\frac{3}{8}$, which is the ratio of the coefficients of the x^2 terms. In general, the quotients of this form get close to the ratio of leading coefficients as x gets larger. - $\frac{3x^2 5x 2}{x^2 4} = \frac{(3x+1)(x-2)}{(x+2)(x-2)} = \frac{3x+1}{x+2}.$ Evaluating the original expression and the simplified expression with any $x \neq \pm 2$ gives us the same value. This evaluation does not prove that the expressions are equal for any value of x other than the one selected. The simplification proves that the expressions are equal for all values of x except x = 2. - **7** Follow the algebraic simplification given. (1) Write down his/her age. Denote the age by x. (2) Multiply it by 2. 2x (3) Add 5. 2x + 5 (4) Multiply this sum by 50. 50(2x+5) = 100x + 250 (5) Subtract 365. (100x + 250) - 365 = 100x - 115 (6) Add his/her height (in inches). 100x - 115 + y, where y is the height (7) Add 115. 100x - 115 + y + 115 = 100x + y As a specific example, suppose the age is 21 and the height is 68. The number obtained by following the steps is 100x + y = 2168 and we can see that the first two digits of the result equal the age and the last two digits equal the height. $$\begin{array}{ll} {\bf 8} & V_{\rm out} = I_{\rm in} \bigg(-\frac{RXi}{R-Xi} \bigg) = \frac{V_{\rm in}}{Z_{\rm in}} \left(-\frac{RXi}{R-Xi} \right) & \{ {\rm definition\ of\ } I_{\rm in} \} \\ & = \frac{V_{\rm in}}{R^2-X^2-3RXi} \left(-\frac{RXi}{R-Xi} \right) & \{ {\rm definition\ of\ } Z_{\rm in} \} \\ & = \frac{V_{\rm in}(R-Xi)}{R-Xi} & \left(-\frac{RXi}{R-Xi} \right) & \\ & = -\frac{RXi}{R^2-X^2-3RXi} \left(V_{\rm in} \right) & \\ & = -\frac{RRi}{R^2-R^2-3RRi} (V_{\rm in}) & \{ {\rm let\ } X=R \} \\ & = -\frac{R^2i}{-3R^2i} \left(V_{\rm in} \right) = \frac{1}{3} V_{\rm in} & \\ \end{array}$$ **9** We need to solve the equation $x^2 - xy + y^2 = 0$ for x. Use the quadratic formula with a = 1, b = -y, and $c = y^2$. $$x = \frac{-(-y) \pm \sqrt{(-y)^2 - 4(1)(y^2)}}{2(1)} = \frac{y \pm \sqrt{y^2 - 4y^2}}{2} = \frac{y \pm \sqrt{-3y^2}}{2} = \frac{y \pm |y| \sqrt{3}i}{2}.$$ Since this equation has imaginary solutions, $x^2 - xy + y^2$ is not factorable over the reals. A similar argument holds for $x^2 + xy + y^2$. **10** The solutions are $$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$ and $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$. $\boxed{\textbf{10}} \text{ The solutions are } x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \text{ and } x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}.$ The average is $\frac{x_1 + x_2}{2} = \frac{-2b/2a}{2} = -\frac{b}{2a}$. Suppose you solve the equation $-x^2 + 4x + 7 = 0$ and obtain the solutions $x_1 \approx -1.32$ and $x_2 \approx 5.32$. Averaging these numbers gives us the value 2, which we can easily see is equal to -b/(2a). **(b)** Yes, try an example such as $\frac{3}{4}$. Let a=3, b=0, c=4, and d=0. Then, from part (a), $p+qi=\frac{12}{9}+\frac{0}{9}i=\frac{12}{9}=\frac{4}{3}$, which is the multiplicative inverse of $\frac{3}{4}$. - (c) a and b cannot both be 0 because then the denominator would be 0. - **12** Since we don't know the value of x, we don't know the sign of x-2, and hence we are unsure of whether or not to reverse the direction of the inequality sign. **13** *Hint:* Try these examples to help you get to the general solution. (1) $x^2 + 1 \ge 0$ {In this case, a > 0, D = -4 < 0, and by examining a sign chart with $x^2 + 1$ as the only factor, we see that the solution is $x \in \mathbb{R}$. (2) $$x^2 - 2x - 3 \ge 0$$ (3) $$-x^2 - 4 \ge 0$$ (4) $$-x^2 - 2x - 1 > 0$$ (5) $$-x^2 + 2x + 3 > 0$$ General solutions categorized by a and D: (1) $$a > 0, D \le 0$$: solution is $x \in \mathbb{R}$ (2) $$a > 0, D > 0$$: let $x_1 = \frac{-b - \sqrt{D}}{2a}$ and $x_2 = \frac{-b + \sqrt{D}}{2a}$ \Rightarrow solution is $(-\infty, x_1] \cup [x_2, \infty)$ (3) $$a < 0, D < 0$$: no solution (4) $$a < 0, D = 0$$: solution is $x = -\frac{b}{2a}$ (5) $$a < 0, D > 0$$: solution is $[x_1, x_2]$ - 14 (a) This problem is solved in three steps. - (i) First, we must determine the height of the cloud base using the formula in Exercise 86 in Section 1.4, $$C = 227(G - D) = 227(80 - 68) = 2724 \text{ ft.}$$ - (ii) Next, we must determine the temperature $T=T_B$ at the cloud base. From (i), the height of the cloud base is H=C=2724 and $T_B=G-\frac{5.5}{1000}$ $H=80-\frac{5.5}{1000} \cdot 2724=65.018$ °F. - (iii) Finally, we must solve the equation $T = B \frac{3}{1000} h$ for h. $\frac{3}{1000} h = B T \implies h = (B T) \frac{1000}{3}$. Now let T = 32°F and from (ii), $B = T_B = 65.018$ °F. $h = (65.018 32) \frac{1000}{3} = 11,006$ ft. - **(b)** Following the procedure in part (a), we obtain the following: (i) $$C = 227(G - D) = 227G - 227D$$ (ii) $$T = T_B = G - \frac{5.5}{1000}H = G - \frac{11}{2000}H = G - \frac{11}{2000}(227G - 227D)$$ {from (i)} $$= G - \frac{2497}{2000}G + \frac{2497}{2000}D = \frac{2497}{2000}D - \frac{497}{2000}G$$ (iii) $$h = (B - 32)\frac{1000}{3} = \left(\frac{2497}{2000}D - \frac{497}{2000}G - 32\right)\frac{1000}{3}$$ {from (ii)} $$= \frac{2497}{6}D - \frac{497}{6}G - \frac{32,000}{3} = \frac{2497}{6}D - \frac{497}{6}G - \frac{64,000}{6} = \frac{1}{6}(2497D - 497G - 64,000)$$ The first equation, $\sqrt{2x-3} + \sqrt{x+5} = 0$, is a sum of square roots that is equal to 0. The only way this could be true is if both radicals are actually equal to 0. It is easy to see that $\sqrt{x+5}$ is equal to 0 only if x=-5, but -5 will not make $\sqrt{2x-3}$ equal to 0, so there is no reason to try to solve the first equation. On the other hand, the second equation, $\sqrt[3]{2x-3} + \sqrt[3]{x+5} = 0$, can be written as $\sqrt[3]{2x-3} = -\sqrt[3]{x+5}$. This just says that one cube root is equal to the negative of another cube root, which could happen since a cube root can be negative. Solving this equation gives us 2x-3=-(x+5) \Rightarrow 3x=-2 \Rightarrow $x=-\frac{2}{3}$. Check $$x_1 = \frac{1}{c^2} = \frac{1}{(2 \times 10^{500})^2} = \frac{1}{4 \times 10^{1000}}.$$ $$LS = \sqrt{x_1} = \frac{1}{2 \times 10^{500}} \qquad RS = cx_1 - \frac{2}{c} = \frac{2 \times 10^{500}}{4 \times 10^{1000}} - \frac{2}{2 \times 10^{500}} = \frac{1}{2 \times 10^{500}} - \frac{2}{2 \times 10^{500}} = -\frac{1}{2 \times 10^{500}}$$ © 2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. Check $$x_2 = \frac{4}{c^2} = \frac{4}{\left(2 \times 10^{500}\right)^2} = \frac{4}{4 \times 10^{1000}} = \frac{1}{10^{1000}}.$$ $$LS = \sqrt{x_2} = \frac{1}{10^{500}}$$ $$RS = cx_2 - \frac{2}{c} = \frac{2 \times 10^{500}}{10^{1000}} - \frac{2}{2 \times 10^{500}} = \frac{2}{10^{500}} - \frac{1}{10^{500}} = \frac{1}{10^{500}}$$ So x_2 is a valid solution. The right side of the original equation, cx - 2/c, must be nonnegative since it is equal to a square root. Note that the right side equals a negative number when $x = x_1$. - **17** (a) S = 975, A = 599, and $x = 1.83 \Rightarrow$ winning percentage $= \frac{S^x}{S^x + A^x} \approx 0.709\,206$. Since they
played 154 games (110 + 44), the number of wins using the estimated winning percentage would be $0.709(154) \approx 109$. Hence, the Pythagorean win-loss record of the 1927 Yankees is 109–45 (only one game off their actual record). - (b) The actual winning percentage is $\frac{110}{154} \approx 0.714\,286$. For an estimate of x, we'll assign $\frac{975^x}{975^x + 599^x}$ to Y_1 and look at a table of values of x starting with x = 1.80 and incrementing by 0.01. From the table, we see that x = 1.88 corresponds to $Y_1 \approx 0.714\,204$, which is the closest value to the actual winning percentage. Thus, the value of x is 1.88. - **18** 1 gallon ≈ 0.13368 ft³ is a conversion factor that would help. The volume of the tank is 10,000 gallons ≈ 1336.8 ft³. Use $V = \frac{4}{3}\pi r^3$ to determine the radius. $$1336.8 = \frac{4}{3}\pi r^3 \quad \Rightarrow \quad r^3 = \frac{1002.6}{\pi} \quad \Rightarrow \quad r \approx 6.83375 \text{ ft. Then use } S = 4\pi r^2 \text{ to find the surface area.}$$ $$S = 4\pi (6.83375)^2 \approx 586.85 \text{ ft}^2.$$ - **(b)** If it's all taxed at 20%, then the tax rate is 20%, which is greater than the tax rate in part (a). - (c) Note that the taxpayer in part (a) has only 10% of his/her total income subject to the 35% rate, and 90% at the 15% rate, so it makes sense that the federal income tax rate gets close to 15%. The "federal income tax rate" is a misnomer in this case since the rate is calculated on taxes other than income taxes. In a sense, we are comparing apples and oranges. If we really wanted to get these tax rates in "proper proportion," we could do so by raising the capital gains rate to 35%. Every year you will hear the "rich people pay less in taxes" statement, but it usually refers to a situation similar to parts (a) and (b). # Chapter 1 Test - 1 y^{99} is negative since it is a negative number raised to an odd power. y x is negative since it is a negative number made even more negative by subtracting a positive number. The quotient of two negatives is a positive number. - Since $-x^2-3<0$ for every x (it doesn't matter that x is negative), $|-x^2-3|=-(-x^2-3)=x^2+3$. - Using distance = rate × time, we get $t=\frac{d}{r}=\frac{91,500,000 \text{ miles}}{186,000 \text{ miles per second}}\approx 492 \text{ seconds}.$ $$\boxed{\mathbf{5}} \quad \frac{x^2y^{-3}}{z} \left(\frac{3x^0}{zy^2}\right)^{-2} = \frac{x^2}{y^3z} \left(\frac{zy^2}{3x^0}\right)^2 = \frac{x^2}{y^3z} \cdot \frac{z^2y^4}{3^2} = \frac{x^2yz}{9}$$ **[6]** $$x^{-2/3}x^{3/4} = x^{-8/12}x^{9/12} = x^{(-8/12) + (9/12)} = x^{1/12} = \sqrt[12]{x}$$ $$\boxed{7} \quad \sqrt[3]{\frac{x^2y}{3}} = \frac{\sqrt[3]{x^2y}}{\sqrt[3]{3}} \cdot \frac{\sqrt[3]{xy^2}}{\sqrt[3]{xy^2}} = \frac{\sqrt[3]{x^3y^3}}{\sqrt[3]{3xy^2}} = \frac{xy}{\sqrt[3]{3xy^2}}$$ **8** $$(x+2)(x^2-3x+5) = x(x^2) + x(-3x) + x(5) + 2(x^2) + 2(-3x) + 2(5)$$ = $x^3 - 3x^2 + 5x + 2x^2 - 6x + 10$ = $x^3 - x^2 - x + 10$ - **9** The leading term of $2x^2(2x+3)^4$ will be determined by multiplying $2x^2$ times $(2x)^4$. The "+3" will affect other terms, but not the leading term. Hence, $2x^2(2x)^4 = 2x^2(16x^4) = 32x^6$. - **10** By trial and error, $2x^2 + 7x 15 = (2x 3)(x + 5)$. - $\boxed{11} \ 3x^3 27x = 3x(x^2 9) = 3x(x+3)(x-3)$ - 12 Recognizing this polynomial as a sum of cubes, we get $$64x^3 + 1 = (4x)^3 + 1^3 = (4x+1)[(4x)^2 - (4x)(1) + 1^2] = (4x+1)(16x^2 - 4x + 1).$$ **13** We must recognize that $(\sqrt[3]{x})^3 = x$, and then factor as we would any other difference of cubes. $$x - 5 = (\sqrt[3]{x})^3 - (\sqrt[3]{5})^3 = (\sqrt[3]{x} - \sqrt[3]{5}) \left[(\sqrt[3]{x})^2 + (\sqrt[3]{x}) (\sqrt[3]{5}) + (\sqrt[3]{5})^2 \right]$$ $$= (\sqrt[3]{x} - \sqrt[3]{5}) (\sqrt[3]{x^2} + \sqrt[3]{5x} + \sqrt[3]{25})$$ - **14** Factor by grouping. $2x^2 + 4x 3xy 6y = 2x(x+2) 3y(x+2) = (2x-3y)(x+2)$ - 15 Recognizing this polynomial as a difference of cubes, we get $$x^{93} - 1 = (x^{31})^3 - 1^3 = (x^{31} - 1) \left[(x^{31})^2 + (x^{31})(1) + 1^2 \right] = (x^{31} - 1) (x^{62} + x^{31} + 1).$$ $$\boxed{\textbf{16}} \ \frac{3x}{x-2} + \frac{5}{x} - \frac{12}{x^2 - 2x} = \frac{3x(x) + 5(x-2) - 12}{x(x-2)} = \frac{3x^2 + 5x - 10 - 12}{x(x-2)} = \frac{3x^2 + 5x - 22}{x(x-2)} = \frac{(3x+11)(x-2)}{x(x-2)} = \frac{3x + 11}{x}$$ **17** Multiply numerator and denominator by xy. $$\frac{\frac{x^2}{y} - \frac{y^2}{x}}{\frac{x}{y} + 1 + \frac{y}{x}} = \frac{\left(\frac{x^2}{y} - \frac{y^2}{x}\right) \cdot xy}{\left(\frac{x}{y} + 1 + \frac{y}{x}\right) \cdot xy} = \frac{x^3 - y^3}{x^2 + xy + y^2} = \frac{(x - y)(x^2 + xy + y^2)}{x^2 + xy + y^2} = x - y$$ $$\frac{\textbf{18}}{h} \frac{(x+h)^2 + 7(x+h) - (x^2 + 7x)}{h} = \frac{x^2 + 2xh + h^2 + 7x + 7h - x^2 - 7x}{h} = \frac{2xh + h^2 + 7h}{h}$$ $$= \frac{h(2x+h+7)}{h} = 2x + h + 7$$ $$\frac{6h^2}{\sqrt{x+h} - \sqrt{x}} = \frac{6h^2}{\sqrt{x+h} - \sqrt{x}} \cdot \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}} = \frac{6h^2\left(\sqrt{x+h} + \sqrt{x}\right)}{(x+h) - x} = \frac{6h^2\left(\sqrt{x+h} + \sqrt{x}\right)}{h} = 6h\left(\sqrt{x+h} + \sqrt{x}\right)$$ $$\boxed{ \textbf{21} } \ \frac{ \left(x^2 - 3 \right)^2 (2x) - x^2 (2) (x^2 - 3) (2x) }{ \left[\left(x^2 - 3 \right)^2 \right]^2 } = \frac{ \left(x^2 - 3 \right) (2x) \left[\left(x^2 - 3 \right) - 2x^2 \right] }{ \left(x^2 - 3 \right)^4 } = \frac{ 2x (-3 - x^2) }{ \left(x^2 - 3 \right)^3 }$$ $$\boxed{\textbf{22}} \left[\frac{5x}{x-3} + \frac{7}{x} = \frac{45}{x^2-3x} \right] \cdot x(x-3) \quad \Rightarrow \quad 5x^2 + 7(x-3) = 45 \quad \Rightarrow \quad 5x^2 + 7x - 66 = 0 \quad \Rightarrow$$ $$(5x+22)(x-3) = 0 \quad \Rightarrow \quad x = -\frac{22}{5}, \text{ 3. But } x \text{ cannot equal 3 since it would make denominators in the original equation equal to 0, so } x = -\frac{22}{5}.$$ $$\boxed{\textbf{23}} \ A = \frac{3B}{2B-5} \quad \Rightarrow \quad A(2B-5) = 3B \quad \Rightarrow \quad 2AB-5A = 3B \quad \Rightarrow \quad 2AB-3B = 5A \quad \Rightarrow \quad B(2A-3) = 5A \quad \Rightarrow \quad B = \frac{5A}{2A-3}$$ Let x denote the original value of the stock. Then x + 0.2x is the value after the first year and x + 0.3(x + 0.2x) is the value after the next year, so an equation that describes the problem is x + 0.3(x + 0.2x) = 2720. Solving gives us x + 0.3(x + 0.2x) = 2720 \Rightarrow x + 0.3x + 0.06x = 2720 \Rightarrow $x = \frac{2720}{1.36} = 2000$. The original value was \$2000. $$25 \ 3x^2 + \sqrt{60}xy + 5y^2 = 0 \quad \Rightarrow \quad 3x^2 + \left(\sqrt{60}y\right)x + 5y^2 = 0 \quad \Rightarrow$$ $$x = \frac{-\sqrt{60}y \pm \sqrt{\left(\sqrt{60}y\right)^2 - 4(3)(5y^2)}}{2(3)} = \frac{-\sqrt{4}\sqrt{15}y \pm \sqrt{60y^2 - 60y^2}}{2(3)} = \frac{-2\sqrt{15}y \pm 0}{2(3)} = \frac{-\sqrt{15}y}{3}$$ **26** $$(x - y + z)^2 = 9 \implies x - y + z = \pm 3 \implies x = y - z \pm 3$$ **27** $$h = 1584 \implies -16t^2 + 320t = 1584 \implies -16t^2 + 320t - 1584 = 0 \implies t^2 - 20t + 99 = 0 \{ \text{divide by } -16 \} \implies (t-9)(t-11) = 0 \implies t = 9 \text{ or } 11.$$ Thus, the object is 1584 feet above the ground after 9 seconds and after 11 seconds. **28** $$i^{4x+3} = (i^{4x})(i^3) = (i^4)^x(i^3) = (1)^x(-i) = (1)(-i) = -i = 0 - i$$, so $a = 0$ and $b = -1$. $$\begin{array}{ll} \boxed{\textbf{29}} \ x^3 - 64 = 0 & \Rightarrow & (x - 4)(x^2 + 4x + 16) = 0 & \Rightarrow & x = 4 \text{ or } x^2 + 4x + 16 = 0. \\ \text{By the quadratic formula, } x = \frac{-4 \pm \sqrt{4^2 - 4(1)(16)}}{2(1)} = \frac{-4 \pm \sqrt{16 - 64}}{2} = \frac{-4 \pm \sqrt{-48}}{2} \\ & = \frac{-4 \pm \sqrt{16}\sqrt{-3}}{2} = \frac{-4 \pm 4\sqrt{3}i}{2} = -2 \pm 2\sqrt{3}i. \end{array}$$ $$\begin{array}{l} \boxed{\bf 31} \ 3x^{32}(x+2)^{65}(x-5)^{13}\left(x^{2/3}-4\right)=0 \quad \Rightarrow \quad x^{32}=0 \ {\rm or} \ (x+2)^{65}=0 \ {\rm or} \ (x-5)^{13}=0 \ {\rm or} \ x^{2/3}-4=0 \quad \Rightarrow \\ x=0 \ {\rm or} \ x=-2 \ {\rm or} \ x=5 \ {\rm or} \ x^{2/3}=4. \ {\rm Now} \ x^{2/3}=4 \quad \Rightarrow \quad \left(x^{2/3}\right)^{3/2}=\pm \left(4\right)^{3/2} \quad \Rightarrow \\ x=\pm \left(\sqrt{4}\right)^3=\pm 2^3=\pm 8. \ {\rm Thus, the \ solutions \ of \ the \ equation \ are \ 0, -2, 5, \ and \ \pm 8.} \end{array}$$ **32** $$20,000 = \frac{4}{3}\pi r_1^3 \quad \Rightarrow \quad r_1^3 = 15,000/\pi \quad \Rightarrow \quad r_1 = \sqrt[3]{15,000/\pi}.$$ Similarly, $25,000 = \frac{4}{3}\pi r_2^3 \quad \Rightarrow \quad r_2 = \sqrt[3]{18,750/\pi}.$ The radius increased $(r_2 - r_1)/r_1 \approx 0.077$, or about 7.7%. **33** Plan A pays out \$3300 per month for 10 years before plan B starts, so its total payout is (10)(12)(3300) + 3300x, where x is the number of months that plan B has paid out. Plan B's total payout is 4200x. Plan B $$\geq$$ Plan A \Rightarrow 4200 $x \geq$ 396,000 + 3300 $x \Rightarrow$ 900 $x \geq$ 396,000 \Rightarrow $x \geq$ 440. It will take plan B 440 months (36 years, 8 months) to have a total payout at least as large as plan A. $$\boxed{\textbf{35}} \ x(2x+1) \geq 3 \quad \Rightarrow \quad 2x^2+x-3 \geq 0 \quad \Rightarrow \quad (2x+3)(x-1) \geq 0 \quad \Rightarrow \quad \text{the solution is } \left(-\infty, -\tfrac{3}{2}\right] \cup [1,\infty).$$ $$\frac{(x+1)^2(x-7)}{(7-x)(x-4)} \le 0 \quad \Rightarrow \quad \frac{x-7}{(7-x)(x-4)} \le 0 \text{ {include } -1} \} \quad \Rightarrow \quad \frac{1}{x-4} \quad 0 \text{ {cancel, change inequality, exclude } 7} \quad \Rightarrow \quad x-4>0 \text{ {exclude } 4} \} \quad \Rightarrow \quad x>4 x$$ the solution is $\{-1\} \cup (4,7) \cup (7,\infty)$. $$\boxed{\textbf{37}} \ \frac{2}{x-3} \le \frac{2}{x+1} \ \Rightarrow \ \frac{2}{x-3} - \frac{2}{x+1} \le 0 \ \Rightarrow \ \frac{2(x+1) - 2(x-3)}{(x-3)(x+1)} \le 0 \ \Rightarrow \ \frac{2x+2-2x+6}{(x-3)(x+1)} \le 0 \ \Rightarrow \ \frac{8}{(x-3)(x+1)} \le 0 \ \Rightarrow \ (x-3)(x+1) < 0$$ | Interval | $(-\infty, -1)$ | (-1, 3) | $(3,\infty)$ | |-----------------|-----------------|---------|--------------| | Sign of $x-3$ | _ | _ | + | | Sign of $x + 1$ | _ | + | + | | Resulting sign | + | _ | + | **38** Let L and W
denote the length and width of the rectangle. Then L+W=14, so L=14-W and the area is A=LW=(14-W)W. Since $A\geq 45$, we have $(14-W)W-45 \Rightarrow -W^2+14W-45\geq 0 \Rightarrow W^2-14W+45\leq 0 \Rightarrow (W-5)(W-9)\leq 0$. | Interval | $(-\infty,5)$ | (5,9) | $(9,\infty)$ | |----------------|---------------|-------|--------------| | Sign of $W-5$ | _ | + | + | | Sign of $W-9$ | _ | _ | + | | Resulting sign | + | 1 | + | From the sign chart, we see that the inequality is satisfied for $5 \le W \le 9$. Of course, once the width passes 7, it becomes the length, but that's not the point of the problem.