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C H A P T E R

1
RAY OPTICS

1.1 POSTULATES OF RAY OPTICS

EXERCISE 1.1-1
Proof of Snell’s Law
The pathlength is given by n1d1 sec θ1 + n2d2 sec θ2. (1)

The pathlength is a function of θ1 and θ2, which are related by

d1 tan θ1 + d2 tan θ2 = d . (2)

The pathlength is minimized when ∂
∂θ1

[n1d1 sec θ1 + n2d2 sec θ2] = 0,

i.e., when n1d1 sec θ1 tan θ1 + n2d2 sec θ2 tan θ2(∂θ2/∂θ1) = 0. (3)

From (2), we have ∂
∂θ1

[d1 tan θ1 + d2 tan θ2] = 0,

so that d1 sec2 θ1 + d2 sec2 θ2(∂θ2/∂θ1) = 0 and
∂θ2

∂θ1

= −d1 sec2 θ1

d2 sec2 θ2

.

Substituting into (3), we have n1d1 sec θ1 tan θ1 − n2
d1 sec2 θ1 tan θ2

sec θ2

= 0,

whereupon n1 tan θ1 = n2 sec θ1 sin θ2, from which n1 sin θ1 = n2 sin θ2, which is Snell’s
law.

1.2 SIMPLE OPTICAL COMPONENTS

EXERCISE 1.2-1
Image Formation by a Spherical Mirror
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A ray originating at P1 = (y1, z1) at angle θ1 meets the mirror at height
y ≈ y1 + θ1z1. (1)

The angle of incidence at the mirror is φ = ψ − θ1 ≈
y

−R
− θ1.

The reflected ray makes angle θ2 with the z axis:

θ2 = 2φ+ θ1 = 2

[
y

−R
− θ1

]
+ θ1 =

2y

−R
− θ1 =

2(y1 + θ1 z1)

−R
− θ1.

Substituting f = −R
2

, we have θ2 =
y1 + θ1 z1

f
− θ1. (2)

The height y2 can be determined from y + (−y2)
z2

≈ θ2. (3)

1
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Substituting from (1) and (2) into (3), we have y1 + θ1z1 − y2 = z2

[
y1 + θ1 z1

f
− θ1

]
and y2 = y1 −

z2 y1

f
+ θ1

[
z1 −

z1 z2

f
+ z2

]
.

If
[
z1 −

z1 z2

f
+ z2

]
= 0, or 1

z1
+ 1
z2

= 1
f

, we have

y2 = y1

(
1− z2

f

)
, (4)

which is independent of θ1.
From (4) it is clear that

z2

f
= 1− y2

y1

, so that y2 = −z2

z1

y1.

EXERCISE 1.2-2
Image Formation
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a) From Snell’s law, we have n1 sin (θ1 + φ) = n2 sin [φ− (−θ2)]. Since all angles are
small, the paraxial version of Snell’s Law is n1(θ1 + φ) ≈ n2(φ+ θ2), or
θ2 ≈ (n1/n2)θ1 + [(n1 − n2)/n2]φ.

Because φ ≈ y/R, we obtain θ2 ≈
n1

n2

θ1 −
n2 − n1

n2R
y, which is (1.2-8).

b) Substituting θ1 ≈ y/z1 and (−θ2) ≈ y/z2 into (1.2-8),

we have −y/z2 ≈
(n1/n2) y

z1

− n2 − n1

n2R
y, from which (1.2-9) follows.

c) With reference to Fig. 1.2-13(b), for the ray passing through the origin 0, we have
angles of incidence and refraction given by y1/z1 and −y2/z2, respectively, so that
the paraxial Snell’s Law leads to (1.2-10). Rays at other angles are also directed
from P1 to P2, as can be shown using a derivation similar to that followed in Exer-
cise 1.2-1.

EXERCISE 1.2-3
Aberration-Free Imaging Surface In accordance with Fermat’s principle, we require
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that the optical path length obey n1d1+n2d2 = constant = n1z1+n2z2. This constitutes
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an equation defining the surface, which can be written in Cartesian coordinates as
n1

√
(z + z1)2 + y2 + n2

√
(z2 − z)2 + y2 = n1z1 + n2z2. (1)

Given z1 and z2, (1) relates y to z and thus defines the surface.

EXERCISE 1.2-4
Proof of the Thin Lens Formulas

A ray at angle θ1 and height y refracts at the first surface in accordance with (1.2-8)
and its angle is altered to θ = θ1

n
− n− 1

nR1

y , (1)

where R1 is the radius of the first surface (R1 < 0).

At the second surface, the angle is altered again to θ2 = nθ − 1− n
R2

y , (2)

where R2 is the radius of the second surface (R2 > 0). We have assumed that the ray
height is not altered since the lens is thin.

Substituting (1) into (2) we obtain:

θ2 = n

[
θ1

n
− n− 1

nR1

y

]
− 1− n

R2

y = θ1 − (n− 1) y

[
1
R1

− 1
R2

]
.

Using (1.2-11), we invoke θ2 = θ1 − (y/f). (3)

If θ1 = 0, then θ2 = (−y/f), and z2 ≈ (y/−θ2) = f , where f is the focal length. In
general θ1 ≈ y

z1
and −θ2 =

y
z2

. Therefore from (3), −y
z2

=
y
z1
− y
f
, from which (1.2-

13) follows. Equation (1.2-14) can be proved by use of an approach similar to that used
in Exercise 1.2-1.

EXERCISE 1.2-5
Numerical Aperture and Angle of Acceptance of an Optical Fiber

Applying Snell’s law at the air/core surface:
sin θa = n1 sin θc = n1 cos θc (1)

n
1

n
2

θc

θa

θc

1

Since sin θc = n2/n1, cos θc =
√

1− (n2/n1)2 .

Therefore, from (1), NA ≡ sin θa = n1

√
1− (n2/n1)2 =

√
n2

1 − n2
2 .

For silica glass with n1 = 1.475 and n2 = 1.460, the numerical aperture NA = 0.21 and
the acceptance angle θa = 12.1◦.
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EXERCISE 1.2-6
Light Trapped in a Light-Emitting Diode

a) The rays within the six cones of half angle θc =
sin−1(1/n) ( = 16.1◦ for GaAs) are refracted into air
in all directions, as shown in the illustration. The rays
outside these six cones are internally reflected. Since
θc < 45◦, the cones do not overlap and the reflected
rays remain outside the cones and continue to reflect
internally without refraction. These are the trapped rays.

θc

b) The area of the spherical cap atop one of these cones is A =
∫ θc

0
2πr sin θ r dθ =

2πr2(1 − cos θc), while the area of the entire sphere is 4πr2. Thus, the fraction of
the emitted light that lies within the solid angle subtended by one of these cones is
A/4πr2 = 1

2
(1 − cos θc) (see Sec. 18.1B). Thus, the ratio of the extracted light to the

total light is 6 × 1
2
(1 − cos θc) = 3(1 − cos θc) ( = 0.118 for GaAs). Thus, 11.8% of the

light is extracted for GaAs.
Note that this derivation is valid only for θc < 45◦ or n >

√
2.

1.3 GRADED-INDEX OPTICS

EXERCISE 1.3-1
The GRIN Slab as a Lens
Using (1.3-11) and (1.3-12), with θ0 = 0 and z = d , we have y(d) = y0 cos (αd) and
θ(d) = −y0α sin (αd). Rays refract into air at an angle θ ′ ≈ n0|θ(d)| = n0y0α sin (αd).

Therefore, AF ≈ y(d)

θ′
=

y0 cos (αd)

noy0α sin (αd)
= 1

n0α tan (αd)
and

f =
y0

θ′
= 1

n0α sin (αd)
, so that

AH = f − AF = 1
n0α

[
1

sin (αd)
− 1

tan (αd)

]
= 1

n0α
1− cos (αd)

sin (αd)

= 1
n0α

2 sin2(αd/2)

2 sin (αd/2) cos (αd/2)
= 1

n0α
tan (αd/2).

Trajectories:

f

H A F

y
0

θ '

d = π/α d = π/2α
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EXERCISE 1.3-2
Numerical Aperture of the Graded-Index Fiber
Using (1.3-11) with y0 = 0, we obtain y(z) = (θ0/α) sin(αz). The ray traces a sinusoidal
trajectory with amplitude θ0/α that must not exceed the radius a. Thus θ0/α = a.
The acceptance angle is therefore θa ≈ n0θ0 = n0αa.

For a step-index fiber (Exercise 1.2-5),
θa =

√
n2

1 − n2
2 =

√
(n1 + n2)(n1 − n2).

If n1 ≈ n2, θa ≈
√

2n1(n1 − n2).
If n1 = n0 and n2 = n0(1− α2a2/2),

θa ≈
√

2n0(α2a2n0/2) = αan0 , which is the
same acceptance angle as for the graded-index fiber.

θ
a

a

θ
0

1.4 MATRIX OPTICS

EXERCISE 1.4-1
Special Forms of the Ray-Transfer Matrix
Using the basic equations
y2 = Ay1 + B θ1 and θ2 = C y1 + D θ1, we obtain:

• If A = 0, then y2 = B θ1, i.e., for a given θ1, we
see that y2 is the same regardless of y1.
This is a focusing system.

θ
1

y
2

• If B = 0, then y2 = A y1, i.e., for a given y1, we
see that y2 is the same regardless of θ1.
This is an imaging system.

y
2

y
1

• If C = 0, then θ2 = D θ1, i.e., we see that all
parallel rays remain parallel.

θ
1 θ

2

• If D = 0, then θ2 = C y1, i.e., we see that all rays
originating from a point become parallel. θ

2

y
1
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EXERCISE 1.4-2
A Set of Parallel Transparent Plates

The first plate has ray transfer matrix:
[
1 d1

0 1

] [
1 0
0 1/n1

]
=

[
1 d1/n1

0 1/n1

]
.

The second plate has ray transfer ma-
trix:

[
1 d2

0 1

] [
1 0
0 n1/n2

]
=

[
1 d2n1/n2

0 n1/n2

]
.

The first and second plates together have a ray transfer matrix:[
1 d2n1/n2

0 n1/n2

] [
1 d1/n1

0 1/n1

]
=

[
1 d1/n1 + d2/n2

0 1/n2

]
.

Similarly N plates have a ray transfer
matrix:

[
1

∑
i d i/ni

0 1/nN

]
.

Including the interface between the N th plate and air, the overall ray transfer matrix
becomes:[
1 0
0 nN

] [
1

∑
i d i/ni

0 1/nN

]
=

[
1

∑
i d i/ni

0 1

]
.

The ray transfer matrix of an inhomogeneous plate with refractive index n(z) and width
d is:1

d∫
0

dz/n(z)

0 1

.

EXERCISE 1.4-3
A Gap Followed by a Thin Lens

M =

[
1 0
−1/f 1

] [
1 d
0 1

]
=

[
1 d
−1/f 1− d/f

]
.

EXERCISE 1.4-4
Imaging with a Thin Lens

M =

[
1 d2

0 1

] [
1 d1

−1/f 1− d1/f

]
=

[
1− d2/f d1 + d2(1− d1/f)
−1/f 1− d1/f

]
.

For imaging, the matrix element B must vanish (see Exercise 1.4-1),
so that d1 + d2(1− d1/f) = 0. Dividing this by d1d2 yields 1/d2 + 1/d1 − 1/f = 0.

For all parallel rays to be focused onto a single point, the matrix element A must vanish
(see Exercise 1.4-1), so that 1− d2/f = 0 or d2 = f .
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EXERCISE 1.4-5
Imaging with a Thick Lens

a) This system is composed of 5 subsystems:
1) A distance d1 in air, followed by
2) An air/glass refracting surface, followed by
3) A distance d in glass, followed by
4) An glass/air refracting surface, followed by
5) A distance d2 in air.

The ray transfer matrix of subsystem 2) is:[
1 0

−(n− 1)/nR 1/n

]
=

[
1 0

−1/nf1 1/n

]
, where f1 = R/(n− 1).

The ray transfer matrix of subsystems 2) and 3) is:[
1 d
0 1

] [
1 0

−1/nf1 1/n

]
=

[
1− d/nf1 d/n
−1/nf1 1/n

]
.

The ray transfer matrix of subsystems 2), 3), and 4) (the lens) is:[
1 0

−(n− 1)/R n

] [
1− d/nf1 d/n
−1/nf1 1/n

]
=

[
1− d/nf1 d/n

−(1− d/nf1)/f1 − 1/f1 −d/nf1 + 1

]
.

The ray transfer matrix of the entire system is:[
1 d2

0 1

] [
1− d/nf1 d/n

−2/f1 + d/nf 2
1 1− d/nf1

] [
1 d1

0 1

]
.

For this system to be an imaging system, the B element of its ray transfer matrix must
vanish, i.e., B = d1(1− d/nf1) + d/n+ d2 [d1(−2/f1 + d/nf 2

1 ) + (1− d/nf1)] = 0.

Grouping together the terms proportional to d1, d2, and d1d2, we have
(d1 + d2)(1− d/nf1)− d1d2(2/f0 − d/nf 2

1 ) + d/n = 0. (1)

Using the definitions
1/f = 2/f1 − d/nf 2

1 (2)
and h = (fd/nf1), (3)

(1) becomes: (d1 + d2)(1− h/f)− d1d2/f + d/n = 0. (4)

We now rewrite (4) in terms of z1 and z2 by substituting d1 = z1 − h and d2 = z2 − h.
The results is: z1 + z2 − z1z2/f + b = 0, (5)

where b = d/n− h2/f − 2h(1− h/f) = d/n+ h2/f − 2h
= d/n+ (h/f)(h− 2f).

(6)

If b = 0, (5) gives the desired result, 1/z1 + 1/z2 = 1/f . To prove that b = 0, we use
(2) and (3) to write 1/f = (2f − h)/f1f , from which 2f − h = f1. Substituting this
into (6), we obtain b = d/n − hf1/f . We now use (3) to write d/n = hf1/f , so that
b = hf1/f − hf1/f = 0, as promised.

b) We show below that a ray parallel to the optical axis at height y1 must pass through
the point F2, a distance f − h from the right surface of the lens, regardless of the
height y1. This can be easily shown if we consider the ray transfer matrix of the system
composed of the thick lens (subsystems 2, 3, and 4 above) followed by a distance
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f − h in air. This composite system has ray transfer matrix[
1 f − h
0 1

] [
1− d/nf1 d/n

−2/f1 + d/nf 2
1 1− d/nf1

]
.

If the element A = 0, then y2 = B θ1 so that for θ1 = 0 (for rays parallel to the optical
axis), we have y2 = 0, i.e., the rays pass through the point F2.

We now examine A = (1− d/nf1) + (f − h)(−2/f1 + d/nf 2
1 ), and show that it is 0.

Using (2), we have A = (1−h/f)+(f − h)(−2 + h/f)/f1. Using the relation 2f−h = f1,
we obtain A = (1− h/f) + (f − h)/(−f) = 0, as promised.

EXERCISE 1.4-6
A Periodic Set of Pairs of Different Lenses

Here, the unit cell is composed of 2 subsystems, each comprising a distance d of free
space followed by a lens. The ray transfer matrix of the unit cell is therefore given by
the product [

1 d
−1/f2 1− d/f2

] [
1 d

−1/f1 1− d/f1

]
.

The A and D elements of this product are:

A = 1− d/f1, D = −d/f2 + (1− d/f2)(1− d/f1)

so that

b = (A + D)/2 = 1− d/f1 − d/f2 + d2/2f1f2 = 2(1− d/2f1)(1− d/2f2)− 1.

The condition |b| ≤ 1 is equivalent to −1 ≤ b ≤ 1 or 0 ≤ b+ 1 ≤ 2, which leads to the
desired condition

0 ≤ (1− d/2f1)(1− d/2f2) ≤ 1.

EXERCISE 1.4-7
An Optical Resonator

The resonator may be regarded as a periodic system whose unit system is a single
round trip between the pair of mirrors. In a resonator of length d , a paraxial ray starting
at the position y0 travels a distance d in free space, is reflected from the mirror 2,
then travels again backward through the same distance of free space, and finally
is reflected from the mirror 1 at position y1. The process is repeated periodically.
The unit cell therefore consists of a cascade of two subsystems, each comprising
propagation in free space followed by reflection from a mirror. The condition of stability
may determined by writing the ray transfer matrix of the unit cell, as in the previous
exercise. Since a mirror with radius of curvature R has the same ray transfer matrix
as a lens with focal length f , if f = −R/2, the stability condition determined for the
periodic set of pairs of lenses considered in the previous exercise may be directly used
to obtain:

0 ≤ (1 + d/R1)(1 + d/R2) ≤ 1.

The same result is set forth in (11.2-5).


