Saleh & Teich Fundamentals of Photonics, Third Edition: Exercise Solutions ©2019 page i

FUNDAMENTALS OF
PHOTONICS

THIRD EDITION

SOLUTIONS MANUAL

FOR EXERCISES?

T A solutions manual is not available for the end-of-chapter problems

FEBRUARY 20, 2019

BAHAA E. A. SALEH

University of Central Florida
Boston University

MALVIN CARL TEICH

Boston University
Columbia University

JOHN WILEY & SONS, INC.



Saleh & Teich Fundamentals of Photonics, Third Edition: Exercise Solutions ©2019 page ii

This edition first published 2019
© 2019 by John Wiley & Sons, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain

permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

The rights of Bahaa E. A. Saleh and Malvin Carl Teich to be identified as the authors of the editorial material in this work have
been asserted in accordance with law.

Registered Office
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Edltorial Office
111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at

www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard
print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of
information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the
information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among
other things, any changes in the instructions or indication of usage and for added warnings and precautions. While the publisher
and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any
implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or
product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher
and authors endorse the information or services the organization, website, or product may provide or recommendations it may
make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice
and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate.
Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work
was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial
damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-n-Publication Data is avarable.
Volume Set ISBN: 9781119506874

Volume | ISBN: 9781119506867

Volume Il ISBN: 9781119506898

Printed in the United States of America

10987654321



Saleh & Teich Fundamentals of Photonics, Third Edition: Exercise Solutions ©2019 page 1

CHAPTER

RAY OPTICS

1.1 POSTULATES OF RAY OPTICS

EXERCISE 1.1-1

Proof of Snell’s Law
The pathlength is given by n;d; sec 6; + nods sec 5. (1)

The pathlength is a function of §; and 6, which are related by
d1 tan 91 + d2 tan 92 = d (2)

The pathlength is minimized when %[nldl sec 01 4+ nady sec 6] = 0,
1
i.e., when Tlldl sec 6 tan 6y + Tl/gdg sec 0y tan Oy (892/891) =0. (3)

From (2), we have a%[dl tan 6y + ds tany] = 0,
1

00 d, sec? 6,
SO that dl SeC2 01 + d2 sec2 92(802/601) =0 and 8791 = —m

d; sec? 6, tan 0,

Substituting into (3), we have n,d; secf; tan; — n, —r. 0,

2
whereupon n; tan 6; = ny sec 6, sin 6o, from which n; sin#; = ns sin 6,, which is Snell’s
law.

1.2 SIMPLE OPTICAL COMPONENTS

EXERCISE 1.2-1
Image Formation by a Spherical Mirror

Wy 2yt

Y, 2,)

A ray originating at P, = (y1, 1) at angle 6; meets the mirror at height

y%y1+9121. (1)
The angle of incidence at the mirroris ¢ = ¢ — 6, = %R — 0.
The reflected ray makes angle 6, with the z axis: '
2 2(y; + 61 2
02:2¢+91 =2 |:_LR_01:| +01 = _7?:5_01 = (yl_i]%ll)—el.
Substituting f = <, we have 0, = %"121 —0,. @)

The height y, can be determined from %2_3/2) ~ 0y. (3)
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Substituting from (1) and (2) into (3), we have y; + 6121 — y2 = 2o {

Y1 +f91 2 01}

291 21 %
and y, = y; — 241 + 0, {21—17.24'22 .

f f
21 22 1 1 1
If[zl—T+zQ}:O, or Z—1+Z—2:7,wehave
z

= (1-2), @
which is independent of 6;.

L ) Y2 22
From (4) itis clear that —— =1 — ==, so that yo = —— ;.

f Y1 Z1

EXERCISE 1.2-2
Image Formation

a)

S

From Snell’s law, we have n, sin (6, + ¢) = nosin [¢ — (—62)]. Since all angles are
small, the paraxial version of Snell's Law is ny(0; + ¢) =~ na(¢ + 62), or
02 ~ (nl/ng)ﬁl + [(nl — ’flg)/’flg](ﬁ

. n Nog — N
Because ¢ ~ y/R, we obtain f, ~ — 0 — ———
Ny

y, which is (1.2-8).

Substituting 6; = y/z; and (—6;) ~ y/z; into (1.2-8),

(m/na)y _ m2=m g which (1.2-9) follows.
z1 TLQR

we have —y/z ~

With reference to Fig. 1.2-13(b), for the ray passing through the origin 0, we have
angles of incidence and refraction given by y; /21 and —y, /22, respectively, so that
the paraxial Snell's Law leads to (1.2-10). Rays at other angles are also directed
from P; to P», as can be shown using a derivation similar to that followed in Exer-
cise 1.2-1.

EXERCISE 1.2-3
Aberration-Free Imaging Surface In accordance with Fermat'’s principle, we require

that the optical path length obey n,d; +n,d> = constant = n, z; +ns2,. This constitutes
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an equation defining the surface, which can be written in Cartesian coordinates as

niy/(z +21)%2 + 92 + n2/(22 — 2)2 + 42 = ny2z1 + naza. (1)

Given z; and z, (1) relates y to z and thus defines the surface.

EXERCISE 1.2-4
Proof of the Thin Lens Formulas

A ray at angle 6, and height y refracts at the first surface in accordance with (1.2-8)

and its angle is altered to 0 = 0 _n—1 Y, (1)
n nk,
where R; is the radius of the first surface (R; < 0).
At the second surface, the angle is altered again to 6, = nf — 1§ By, (2)
2

where R, is the radius of the second surface (R, > 0). We have assumed that the ray
height is not altered since the lens is thin.

Substituting (1) into (2) we obtain:

_ ﬁin—l l—-n, _p 1 1
02—n[n oy y 7 y=6—(n—1y 7 ik
Using (1.2-11), we invoke 6, = 6, — (y/f). (3)

If 6, = 0, then 6; = (—y/f), and z» = (y/—62) = f, where f is the focal length. In

general 6, ~ L and —6, = L. Therefore from (3), =% = X — X from which (1.2-
z1 Vo) 22 21 f

13) follows. Equation (1.2-14) can be proved by use of an approach similar to that used

in Exercise 1.2-1.

EXERCISE 1.2-5
Numerical Aperture and Angle of Acceptance of an Optical Fiber

Applying Snell’s law at the air/core surface:

sinf, = n; sinf, = n; cosf, (1) _)7

Since sinf, = na/ny, cosl, = /1 — (na/n1)?.

Therefore, from (1), NA = sinf, = ny/1 — (na/n1)2 = \/n? —n3.

For silica glass with n; = 1.475 and n, = 1.460, the numerical aperture NA = 0.21 and
the acceptance angle 6, = 12.1°.
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EXERCISE 1.2-6

Light Trapped in a Light-Emitting Diode

a) The rays within the six cones of half angle 6. =
sin™'(1/n) (= 16.1° for GaAs) are refracted into air
in all directions, as shown in the illustration. The rays
outside these six cones are internally reflected. Since
0. < 45°, the cones do not overlap and the reflected
rays remain outside the cones and continue to reflect
internally without refraction. These are the trapped rays.

b) The area of the spherical cap atop one of these cones is A = foe“ 2rrsinfrdf =
27r2(1 — cosf.), while the area of the entire sphere is 4rr2. Thus, the fraction of
the emitted light that lies within the solid angle subtended by one of these cones is
A/4mr? = 1(1 — cosd.) (see Sec. 18.1B). Thus, the ratio of the extracted light to the
total light is 6 x £ (1 — cosf.) = 3(1 — cosf.) (= 0.118 for GaAs). Thus, 11.8% of the

light is extracted for GaAs.
Note that this derivation is valid only for 6. < 45° or n. > /2.

1.3 GRADED-INDEX OPTICS

EXERCISE 1.3-1

The GRIN Slab as a Lens
Using (1.3-11) and (1.3-12), with , = 0 and z = d, we have y(d) = y, cos (ad) and
0(d) = —yoarsin (ad). Rays refract into air at an angle 6’ = ny|0(d)| = noyoasin (ad).

Therefore, AF ~ 9) _ _wncos(ad) .
erefore, 0’ neyoa sin (ad) noa tan (ad) and
% __ 1 h
f= o m———y so that
e 11 ]_ 1 1-cos(ad)
f noa | sin(ad)  tan(ad) Mo sin (ad)
o 2sin®(ad/2) =1 tan(ad/2).

~ o 2sin (d/2) cos (ad/2)  moc

Trajectories:

RN
M

F d = 7fa d = n2a
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EXERCISE 1.3-2

Numerical Aperture of the Graded-Index Fiber

Using (1.3-11) with yo = 0, we obtain y(z) = (6y/a) sin(az). The ray traces a sinusoidal
trajectory with amplitude 6,/ that must not exceed the radius a. Thus 6y/a = a.

The acceptance angle is therefore 6, =~ ng6y = noaa.

For a step-index fiber (Exercise 1.2-5), N
0o = /i —n3 = /(1 + na) (1 — ). ‘f %,

If ny ~ ng, 9(1 ~ \/277,1(711 — nz). 0

If ny = no and ny = ne(1 — a?a?/2),

0, = /2n0(a?a?ny/2) = aang , which is the

same acceptance angle as for the graded-index fiber.

1.4 MATRIX OPTICS

EXERCISE 1.4-1

Special Forms of the Ray-Transfer Matrix
Using the basic equations
Yo = Ay1 + Bgl and 0y, = Cyl + DGI, we obtain:

e If A= 0, then y, = B4, i.e., for a given 6, we

see that y, is the same regardless of y; .
This is a focusing system. ?‘

e If B =0, then y» = Ay, i.e., for a given y;, we % ?yz
see that y, is the same regardless of 6.
This is an imaging system.

e If C =0, then 0, = D¢, i.e., we see that all
parallel rays remain parallel.

/4

o If D=0, then 6, = Cy;, i.e., we see that all rays Y,
originating from a point become parallel. §
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EXERCISE 1.4-2
A Set of Parallel Transparent Plates
. .o 1 d1 1 0 _ 1 dl/nl
The first plate has ray transfer matrix: {0 1} {0 1/n1} = {0 1y |-

The second plate has ray transfer ma- |1 da] (1 0 | _[1 dani/ne
trix: 0 1 0 nl/ng 0 nl/nz ’

The first and second plates together have a ray transfer matrix:

{1 din/nQ} {1 dl/nl} _ {1 dl/n1+d2/n2} .

0 ni/my | |0 1/my 0 1/ns
Similarly N plates have a ray transfer |1 >, di/n;
matrix: 0 1/nyn ’

Including the interface between the N*'" plate and air, the overall ray transfer matrix
becomes:

0 nn 0 1/7’11\] 10 1 '

The ray transfer matrix of an inhomogeneous plate with refractive index n(z) and width
dis:

d
[1 bfdz/n(z)] _

0 1

EXERCISE 1.4-3
A Gap Followed by a Thin Lens

w=Lhe U =T %]

EXERCISE 1.4-4
Imaging with a Thin Lens
1 d, 1 dy _[1=d2/f di+da(1—-di/f)
0 1][-1/f 1-di/f -1/f 1—di/f '

For imaging, the matrix element B must vanish (see Exercise 1.4-1),
so that d; + d2(1 — d1/f) = 0. Dividing this by d,d- yields 1/d> +1/d; —1/f = 0.

For all parallel rays to be focused onto a single point, the matrix element A must vanish
(see Exercise 1.4-1), sothat1 —d,/f =0 or d, = f.
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EXERCISE 1.4-5
Imaging with a Thick Lens

a) This system is composed of 5 subsystems:
1) A distance d; in air, followed by
2) An air/glass refracting surface, followed by
3) A distance d in glass, followed by
4) An glass/air refracting surface, followed by
5) A distance d, in air.

The ray transfer matrix of subsystem 2) is:

1 0 1 0
|—(n—1)/nR 1/n} - [—1/77,f1 1/41 where fi = R/(n —1).

The ray transfer matrix of subsystems 2) and 3) is:

| BTy R v A

The ray transfer matrix of subsystems 2), 3), and 4) (the lens) is:

1 0} {l—d/nfl d/n} _ { 1—d/nf d/n
_—(n—l)/R n —1/nf; 1/n|~ |- —-d/nfi)/fi—1/fi —d/nfi+1|"

The ray transfer matrix of the entire system is:

[ e

For this system to be an imaging system, the B element of its ray transfer matrix must
vanish, i.e., B=d:(1 —d/nfi1) + d/n+ds [d1(=2/f1 + d/nf?)+ (1 —d/nf1)] = 0.

Grouping together the terms proportional to di, d», and d;d», we have

(di +do)(1 —d/nf1) — dida(2/fo — d/nf?) +d/n =0. (1)
Using the definitions

1/f=2/fi—d/nf? (2)
and h = (fd/nf1), 3)
(1) becomes: (d; + d2)(1 — h/f) — did>/f +d/n=0. (4)
We now rewrite (4) in terms of z; and z, by substituting d; = 2; — h and d; = 2z, — h.
The results is: z; + 22 — z122/f + b =10, (5)

b=d/n—h2/f—2h(1 —h/f)=d/n+h?/f—2h

where " g+ b/ 1) - 21). ' (©)

If b = 0, (5) gives the desired result, 1/z + 1/2;, = 1/f. To prove that b = 0, we use
(2) and (3) to write 1/f = (2f — h)/f1f, from which 2f — h = f;. Substituting this
into (6), we obtain b = d/n — hf,/f. We now use (3) to write d/n = hf1/f, so that
b=~hf1/f—hf1/f =0, as promised.

b) We show below that a ray parallel to the optical axis at height y; must pass through
the point Fy, a distance f — h from the right surface of the lens, regardless of the
height ;. This can be easily shown if we consider the ray transfer matrix of the system
composed of the thick lens (subsystems 2, 3, and 4 above) followed by a distance
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f — hin air. This composite system has ray transfer matrix

1 f—hl[ 1—d/nf d/n
0 1 ||-2/fi+d/nf2 1—d/nfi|"

If the element A = 0, then y, = B#, so that for ; = 0 (for rays parallel to the optical
axis), we have y, = 0, i.e., the rays pass through the point F,.

We now examine A= (1 —d/nf1)+ (f — h)(—2/f1 + d/nf?), and show that it is 0.
Using (2), we have A= (1—-h/f)+(f — h)(—2+ h/f)/ f1. Using the relation 2f —h = f,
weobtain A= (1—-h/f)+ (f —h)/(—f) =0, as promised.

EXERCISE 1.4-6
A Periodic Set of Pairs of Different Lenses
Here, the unit cell is composed of 2 subsystems, each comprising a distance d of free

space followed by a lens. The ray transfer matrix of the unit cell is therefore given by
the product

1 d 1 d
=1/fa 1=d/fs| |-1/f 1-d/fi]"
The A and D elements of this product are:

A=1-d/fi, D=—d/fa+(1—d/f)(1—d/f1)

so that
b=(A+D)/2=1-d/fi —d/fo+d*/2f1f>=2(1—d/2f1)(1 - d/2f>) — 1.

The condition |b] < 1is equivalentto -1 <b<1 or 0<b+1 < 2, which leads to the
desired condition

0<(1—d/2f)(1—d/2f) < 1.

EXERCISE 1.4-7
An Optical Resonator

The resonator may be regarded as a periodic system whose unit system is a single
round trip between the pair of mirrors. In a resonator of length d, a paraxial ray starting
at the position y, travels a distance d in free space, is reflected from the mirror 2,
then travels again backward through the same distance of free space, and finally
is reflected from the mirror 1 at position y,. The process is repeated periodically.
The unit cell therefore consists of a cascade of two subsystems, each comprising
propagation in free space followed by reflection from a mirror. The condition of stability
may determined by writing the ray transfer matrix of the unit cell, as in the previous
exercise. Since a mirror with radius of curvature R has the same ray transfer matrix

as a lens with focal length f, if f = —R/2, the stability condition determined for the
periodic set of pairs of lenses considered in the previous exercise may be directly used
to obtain:

0<(1+d/Ry)(1+d/Rs) <1
The same result is set forth in (11.2-5).



