INSTRUCTOR'S SOLUTIONS MANUAL

The University of Texas at San Antonio Radford University

KEYING YE SHARON L. MYERS

PROBABILITY & STATISTICS FOR ENGINEERS & SCIENTISTS MYSTATLAB UPDATE NINTH EDITION

Ronald E. Walpole

Roanoke University

Raymond H. Myers

Virginia Tech

Sharon L. Myers

Radford University

Keying Ye

The University of Texas at San Antonio

PEARSON

Boston Columbus Indianapolis New York San Francisco Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Reproduced by Pearson from electronic files supplied by the author.

Copyright © 2017, 2012, 2007 Pearson Education, Inc. Publishing as Pearson, 501 Boylston Street, Boston, MA 02116.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America.

ISBN-13: 978-0-13-411622-8 ISBN-10: 0-13-411622-4

www.pearsonhighered.com

Contents

Chapter 1

Introduction to Statistics and Data Analysis

- 1.1 (a) 15.
	- (b) $\bar{x} = \frac{1}{15} (3.4 + 2.5 + 4.8 + \dots + 4.8) = 3.787.$
	- (c) Sample median is the 8th value, after the data is sorted from smallest to largest: 3.6.

(e) After trimming total 40% of the data (20% highest and 20% lowest), the data becomes:

$$
\begin{array}{cccccc}\n2.9 & 3.0 & 3.3 & 3.4 & 3.6 \\
3.7 & 4.0 & 4.4 & 4.8\n\end{array}
$$

So. the trimmed mean is

$$
\bar{x}_{\text{tr20}} = \frac{1}{9}(2.9 + 3.0 + \dots + 4.8) = 3.678.
$$

- (f) They are about the same.
- 1.2 (a) Mean=20.7675 and Median=20.610.
	- (b) $\bar{x}_{\text{tr10}} = 20.743$.
	- (c) A dot plot is shown below. Γ 18 19 20 21 22 23
	- (d) No. They are all close to each other.

1.3 (a) A dot plot is shown below.

200 205 210 215 220 225 230

In the figure, "*×*" represents the "No aging" group and "*◦*" represents the "Aging" group.

- (b) Yes; tensile strength is greatly reduced due to the aging process.
- (c) Mean $_{\text{Aging}} = 209.90$, and Mean_{No aging} = 222.10.
- (d) Median $_{\text{Aging}} = 210.00$, and Median_{No aging} = 221.50. The means and medians for each group are similar to each other.
- 1.4 (a) $\bar{X}_A = 7.950$ and $\tilde{X}_A = 8.250$; $\bar{X}_B = 10.260$ and $\bar{X}_B = 10.150$.
	- (b) A dot plot is shown below.

\times \times \times	\times \times \times \times \times	\times 0000 00	80		
6.5	7.5	8.5	9.5	10.5	11.5

In the figure, "*×*" represents company *A* and "*◦*" represents company *B*. The steel rods made by company *B* show more flexibility.

1.5 (a) A dot plot is shown below.

−10 0 10 20 30 40

In the figure, "*×*" represents the control group and "*◦*" represents the treatment group.

- (b) $\bar{X}_{\text{Control}} = 5.60, \, \tilde{X}_{\text{Control}} = 5.00, \, \text{and} \, \bar{X}_{\text{tr}(10); \text{Control}} = 5.13;$ $\bar{X}_{\text{Treatment}} = 7.60, \, \tilde{X}_{\text{Treatment}} = 4.50, \, \text{and} \, \, \bar{X}_{\text{tr}(10); \text{Treatment}} = 5.63.$
- (c) The difference of the means is 2.0 and the differences of the medians and the trimmed means are 0.5, which are much smaller. The possible cause of this might be due to the extreme values (outliers) in the samples, especially the value of 37.
- 1.6 (a) A dot plot is shown below.

1.95 2.05 2.15 2.25 2.35 2.45 2.55

In the figure, "*×*" represents the 20*◦*C group and "*◦*" represents the 45*◦*C group.

- (b) $\bar{X}_{20^{\circ} \text{C}} = 2.1075$, and $\bar{X}_{45^{\circ} \text{C}} = 2.2350$.
- (c) Based on the plot, it seems that high temperature yields more high values of tensile strength, along with a few low values of tensile strength. Overall, the temperature does have an influence on the tensile strength.
- (d) It also seems that the variation of the tensile strength gets larger when the cure temperature is increased.

1.7
$$
s^2 = \frac{1}{15-1}[(3.4 - 3.787)^2 + (2.5 - 3.787)^2 + (4.8 - 3.787)^2 + \dots + (4.8 - 3.787)^2] = 0.94284;
$$

\n $s = \sqrt{s^2} = \sqrt{0.9428} = 0.971.$

Solutions for Exercises in Chapter 1 3

$$
1.8 \ s^2 = \frac{1}{20-1}[(18.71 - 20.7675)^2 + (21.41 - 20.7675)^2 + \dots + (21.12 - 20.7675)^2] = 2.5329;
$$

$$
s = \sqrt{2.5345} = 1.5915.
$$

- 1.9 (a) $s_{\text{No Aging}}^2 = \frac{1}{10^{-3}}$ $\frac{1}{10-1}[(227-222.10)^2+(222-222.10)^2+\cdots+(221-222.10)^2]=23.66;$ $s_{\text{No Aging}} =$ *√* $23.62 = 4.86.$ $s_{\text{Aging}}^2 = \frac{1}{10}$ $\frac{1}{10-1}[(219-209.90)^2+(214-209.90)^2+\cdots+(205-209.90)^2]=42.10;$ $s_{\text{Aging}} = \sqrt{42.12} = 6.49.$
	- (b) Based on the numbers in (a), the variation in "Aging" is smaller that the variation in "No Aging" although the difference is not so apparent in the plot.
- 1.10 For company *A*: $s_A^2 = 1.2078$ and $s_A =$ *√* $1.2072 = 1.099.$ For company *B*: $s_B^2 = 0.3249$ and $s_B =$ *√* $0.3249 = 0.570.$
- 1.11 For the control group: $s_{\text{Control}}^2 = 69.38$ and $s_{\text{Control}} = 8.33$. For the treatment group: $s_{\text{Treatment}}^2 = 128.04$ and $s_{\text{Treatment}} = 11.32$.
- 1.12 For the cure temperature at 20[°]C: $s_{20^{\circ}C}^2 = 0.005$ and $s_{20^{\circ}C} = 0.071$. For the cure temperature at 45[°]C: s_{45}^2 [°]_C = 0.0413 and s_{45} [°]_C = 0.2032. The variation of the tensile strength is influenced by the increase of cure temperature.
- 1.13 (a) Mean = $\bar{X} = 124.3$ and median = $\tilde{X} = 120$; (b) 175 is an extreme observation.
- 1.14 (a) Mean = $\bar{X} = 570.5$ and median = $\tilde{X} = 571$;
	- (b) Variance = $s^2 = 10$; standard deviation= $s = 3.162$; range=10;
	- (c) Variation of the diameters seems too big so the quality is questionable.
- 1.15 Yes. The value 0.03125 is actually a *P*-value and a small value of this quantity means that the outcome (i.e., *HHHHH*) is very unlikely to happen with a fair coin.
- 1.16 The term on the left side can be manipulated to

$$
\sum_{i=1}^{n} x_i - n\bar{x} = \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} x_i = 0,
$$

which is the term on the right side.

- 1.17 (a) $\bar{X}_{\text{smokes}} = 43.70$ and $\bar{X}_{\text{nonsmokes}} = 30.32;$
	- (b) $s_{\rm{smokes}} = 16.93$ and $s_{\rm{nonsmokes}} = 7.13$;
	- (c) A dot plot is shown below.

In the figure, "*×*" represents the nonsmoker group and "*◦*" represents the smoker group.

- (d) Smokers appear to take longer time to fall asleep and the time to fall asleep for smoker group is more variable.
- 1.18 (a) A stem-and-leaf plot is shown below.

(b) The following is the relative frequency distribution table.

Relative Frequency Distribution of Grades					
Class Interval	Class Midpoint	Frequency, f	Relative Frequency		
$10 - 19$	14.5	3	0.05		
$20 - 29$	24.5	2	0.03		
$30 - 39$	34.5	3	0.05		
$40 - 49$	44.5	4	0.07		
$50 - 59$	54.5	5	0.08		
$60 - 69$	64.5	11	0.18		
$70 - 79$	74.5	14	0.23		
$80 - 89$	84.5	14	0.23		
$90 - 99$	94.5	4	0.07		

(c) A histogram plot is given below.

(d) $\bar{X} = 65.48, \tilde{X} = 71.50$ and $s = 21.13$.

1.19 (a) A stem-and-leaf plot is shown below.

Stem	Leaf	Frequency
0	22233457	
1	023558	6
$\overline{2}$	035	3
3	03	$\overline{2}$
4	057	3
5	0569	
հ	0005	

Copyright \odot 2012 Pearson Education, Inc. Publishing as Prentice Hall.

(b) The following is the relative frequency distribution table.

(c) $\bar{X} = 2.797$, $s = 2.227$ and Sample range is $6.5 - 0.2 = 6.3$.

1.20 (a) A stem-and-leaf plot is shown next.

Stem	Leaf	Frequency
∩*	34	2
0	56667777777889999	17
$1*$	0000001223333344	16
1	5566788899	10
$2*$	034	3
\mathfrak{D}		
ą*		

(b) The relative frequency distribution table is shown next.

	Class Interval Class Midpoint Frequency, f		Relative Frequency		
$0 - 4$			0.04		
$5-9$		17	0.34		
$10 - 14$	12	16	0.32		
$15 - 19$	17	10	0.20		
$20 - 24$	22	3	0.06		
$25 - 29$	27		0.02		
$30 - 34$	32		0.02		

Relative Frequency Distribution of Fruit Fly Lives

(c) A histogram plot is shown next.

(d) $\tilde{X} = 10.50$.

Copyright \odot 2012 Pearson Education, Inc. Publishing as Prentice Hall.

- 1.21 (a) $\bar{X} = 74.02$ and $\tilde{X} = 78$; (b) $s = 39.26$.
- 1.22 (a) $\bar{X} = 6.7261$ and $\tilde{X} = 0.0536$.
	- (b) A histogram plot is shown next.

- (c) The data appear to be skewed to the left.
- 1.23 (a) A dot plot is shown next.

$$
\begin{array}{ccccccccc}\n & & 160.15 & & 395.10 & & & & \times \\
& & & & & & \times & & & \\
\hline\n0 & & 100 & & 200 & & 300 & & 400 & & 500 & & 600 & & 700 & & 800 & & 900 & & 1000 \\
\end{array}
$$

- (b) $\bar{X}_{1980} = 395.1$ and $\bar{X}_{1990} = 160.2$.
- (c) The sample mean for 1980 is over twice as large as that of 1990. The variability for 1990 decreased also as seen by looking at the picture in (a). The gap represents an increase of over 400 ppm. It appears from the data that hydrocarbon emissions decreased considerably between 1980 and 1990 and that the extreme large emission (over 500 ppm) were no longer in evidence.
- 1.24 (a) $\bar{X} = 2.8973$ and $s = 0.5415$.
	- (b) A histogram plot is shown next.

Copyright \odot 2012 Pearson Education, Inc. Publishing as Prentice Hall.

(c) Use the double-stem-and-leaf plot, we have the following.

1.25 (a)
$$
\bar{X} = 33.31;
$$

- (b) $\tilde{X} = 26.35$;
- (c) A histogram plot is shown next.

- (d) $\bar{X}_{tr(10)} = 30.97$. This trimmed mean is in the middle of the mean and median using the full amount of data. Due to the skewness of the data to the right (see plot in (c)), it is common to use trimmed data to have a more robust result.
- 1.26 If a model using the function of percent of families to predict staff salaries, it is likely that the model would be wrong due to several extreme values of the data. Actually if a scatter plot of these two data sets is made, it is easy to see that some outlier would influence the trend.
- 1.27 (a) The averages of the wear are plotted here.

(b) When the load value increases, the wear value also increases. It does show certain relationship.

- (d) The relationship between load and wear in (c) is not as strong as the case in (a), especially for the load at 1300. One reason is that there is an extreme value (750) which influence the mean value at the load 1300.
- 1.28 (a) A dot plot is shown next.

High	Low	
$\begin{array}{c}\n \text{0000} & \text{0000} \\ \text{0000} & \text{71.85} \\ \text{71.45} & \text{71.65} \\ \end{array}$ \n	$\begin{array}{c}\n \text{72.05} \\ \text{72.25} \\ \text{72.45} \\ \end{array}$ \n	$\begin{array}{c}\n \text{1000} \\ \text{12.85} \\ \text{13.05} \\ \end{array}$ \n

In the figure, "*×*" represents the low-injection-velocity group and "*◦*" represents the high-injection-velocity group.

- (b) It appears that shrinkage values for the low-injection-velocity group is higher than those for the high-injection-velocity group. Also, the variation of the shrinkage is a little larger for the low injection velocity than that for the high injection velocity.
- 1.29 A box plot is shown next.

1.30 A box plot plot is shown next.

1.31 (a) A dot plot is shown next.

In the figure, "*×*" represents the low-injection-velocity group and "*◦*" represents the high-injection-velocity group.

- (b) In this time, the shrinkage values are much higher for the high-injection-velocity group than those for the low-injection-velocity group. Also, the variation for the former group is much higher as well.
- (c) Since the shrinkage effects change in different direction between low mode temperature and high mold temperature, the apparent interactions between the mold temperature and injection velocity are significant.
- 1.32 An interaction plot is shown next.

It is quite obvious to find the interaction between the two variables. Since in this experimental data, those two variables can be controlled each at two levels, the interaction can be inves-

tigated. However, if the data are from an observational studies, in which the variable values cannot be controlled, it would be difficult to study the interactions among these variables.