
Part A. ORDINARY DIFFERENTIAL
EQUATIONS (ODEs)

CHAPTER 1 First-Order ODEs

Major Changes

There is more material on modeling in the text as well as in the problem set.
Some additions on population dynamics appear in Sec. 1.5.
Team Projects, CAS Projects, and CAS Experiments are included in most problem sets.

SECTION 1.1. Basic Concepts. Modeling, page 2

Purpose. To give the students a first impression of what an ODE is and what we mean
by solving it.

The role of initial conditions should be emphasized since, in most cases, solving an
engineering problem of a physical nature usually means finding the solution of an initial
value problem (IVP).

Further points to stress and illustrate by examples are:

The fact that a general solution represents a family of curves.

The distinction between an arbitrary constant, which in this chapter will always be denoted
by c, and a fixed constant (usually of a physical or geometric nature and given in most cases).

The examples of the text illustrate the following.

Example 1: the verification of a solution

Examples 2 and 3: ODEs that can actually be solved by calculus with Example 2 giving
an impression of exponential growth (Malthus!) and decay (radioactivity and further
applications in later sections)

Example 4: the straightforward solution of an IVP

Example 5: a very detailed solution in all steps of a physical IVP involving a physical
constant k

Background Material. For the whole chapter we need integration formulas and
techniques from calculus, which the student should review.

General Comments on Text
This section should be covered relatively rapidly to get quickly to the actual solution methods
in the next sections.

Equations (1)–(3) are just examples, not for solution, but the student will see that solutions
of (1) and (2) can be found by calculus. Instead of (3), one could perhaps take a third-order
linear ODE with constant coefficients or an Euler–Cauchy equation, both not of great interest.
The present (3) is included to have a nonlinear ODE (a concept that will be mentioned later
when we actually need it); it is not too difficult to verify that a solution is

with arbitrary constants a, b, c, d.

y �
ax � b

cx � d

1
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Problem Set 1.1 will help the student with the tasks of

Solving by calculus

Finding particular solutions from given general solutions

Setting up an ODE for a given function as solution, e.g., 

Gaining a first experience in modeling, by doing one or two problems

Gaining a first impression of the importance of ODEs without wasting time on matters
that can be done much faster, once systematic methods are available.

Comment on “General Solution” and “Singular Solution”
Usage of the term “general solution” is not uniform in the literature. Some books use the
term to mean a solution that includes all solutions, that is, both the particular and
the singular ones. We do not adopt this definition for two reasons. First, it is frequently
quite difficult to prove that a formula includes all solutions; hence, this definition of a
general solution is rather useless in practice. Second, linear differential equations
(satisfying rather general conditions on the coefficients) have no singular solutions (as
mentioned in the text), so that for these equations a general solution as defined does include
all solutions. For the latter reason, some books use the term “general solution” for linear
equations only; but this seems very unfortunate.

SOLUTIONS TO PROBLEM SET 1.1, page 8

2.

4.

6.

8.

10.

12.

14.

16. Substitution of into the ODE gives

.

Similarly,

.

18. .

20. k follows from .

Answer: . Since the decay is exponential, would
give .(y0>2)>2 � 0.25y0

36,000 � 2 # 18,000e35,000k � 0.26y0

e18,000k � 1
2, k � (ln 12)>18,000 � �0.000039

e�3.6k � 1
2 ˛, k � 0.19254, (a) e�k � 0.825, (b) 3.012 # 10�31

y � 1
4 

x2,  yr � 1
2 

x,  thus  1
4 

x2 � x (1
2 x) � 1

4 
x2 � 0

yr2 � xyr � y � c2 � xc � (cx � c2) � 0

y � cx � c2

y � 4 � 4 sin2 x

y2 � 4x2 � 12

y � pe�2.5x2

y � �
1

0.23
 e�0.2x � c1x2 � c2x � c3

y � a cos x � b sin x

y � ce�1.5x

y � e�x2>2 � c

y � ex

yr � f (x)

2 Instructor’s Manual
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SECTION 1.2. Geometric Meaning of . Direction Fields, 
Euler’s Method, page 9

Purpose. To give the student a feel for the nature of ODEs and the general behavior of fields
of solutions. This amounts to a conceptual clarification before entering into formal
manipulations of solution methods, the latter being restricted to relatively small—albeit
important—classes of ODEs. This approach is becoming increasingly important, especially
because of the graphical power of computer software. It is the analog of conceptual studies
of the derivative and integral in calculus as opposed to formal techniques of differentiation
and integration.

Comment on Order of Sections
This section could equally well be presented later in Chap. 1, perhaps after one or two
formal methods of solution have been studied.

Euler’s method has been included for essentially two reasons, namely, as an early eye
opener to the possibility of numerically obtaining approximate values of solutions by 
step-by-step computations and, secondly, to enhance the student’s conceptual geometric
understanding of the nature of an ODE.

Furthermore, the inaccuracy of the method will motivate the development of much more
accurate methods by practically the same basic principle (in Sec. 21.1).

Problem Set 1.2 will help the student with the tasks of:

Drawing direction fields and approximate solution curves

Handling your CAS in selecting appropriate windows for specific tasks

A first look at the important Verhulst equation (Prob. 4)

Bell-shaped curves as solutions of a simple ODE

Outflow from a vessel (analytically discussed in the next section)

Discussing a few types of motion for given velocity (Parachutist, etc.)

Comparing approximate solutions for different step size

SOLUTIONS TO PROBLEM SET 1.2, page 11

2. Ellipses . If your CAS does not give you what you expected, change
the given point.

4. Verhulst equation, to be discussed as a population model in Sec. 1.5. The given points
correspond to constant solutions , an increasing solution through

, and a decreasing solution through .

6. Solution , not needed for doing the problem.

8. ODE of the bell-shaped curves .

10. ODE of the outflow from a vessel, to be discussed in Sec. 1.3.

12. , not needed to do the problem.

14. , not needed to do the problem.

16. (a) Your PC may give you fields of varying quality, depending on the choice of the
region graphed, and good choices are often obtained only after some trial and error.
Enlarging generally gives more details. Subregions where is large are usually
critical and often tend to give nonsense.

ƒ
 
yr ƒ

y(x) � sin (x � 1
4 
p)

y � 21t � 1

y � ce�x2

y(x) � �arctan [1>(x � c)]

(0, 3)(0, 1)
[(0, 0) and (0, 2)]

x2 � 1
4 

y2 � c

y r � f (x, y )

Instructor’s Manual 3
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(b) . Your CAS will produce the direction field well, even at points
of the x-axis where the tangents of solution curves are vertical.

(c) (not needed for doing the problem).

(d) by remembering calculus.

18. . The computed value for shows that its error has decreased by about
a factor 10. This is typical for this “first-order method” (Euler’s method), as will be
seen in Sec. 21.1.

x � 0.1y � ex
y � ce�x>2
y2 � x2 � c

2x � 18yyr � 0

4 Instructor’s Manual

Error Error in Prob. 17

0.01 1.010000 1.010050 0.000050
0.02 1.020100 1.020201 0.000101
0.03 1.030301 1.030455 0.000154
0.04 1.040604 1.040811 0.000207
0.05 1.051010 1.051271 0.000261
0.06 1.061520 1.061837 0.000317
0.07 1.072135 1.072508 0.000373
0.08 1.082857 1.083287 0.000430
0.09 1.093685 1.094174 0.000489
0.10 1.104622 1.105171 0.000549 0.005171

y(xn)ynxn

Error

0 1.0000 0
0.2 1.0000 0.0000
0.4 0.9984 0.0083
0.6 0.9729 0.0453
0.8 0.8502 0.0972
1.0 0.5541 0.0541
1.2 0.2471 0.0396
1.4 0.1205 0.0363
1.6 0.0647 0.0223
1.8 0.0373 0.0130
2.0 0.0227 0.0076

�
�
�
�

ynxn

20. The error is first negative, then positive, and finally decreases as the solution (which
is decreasing for all positive x) approaches the limit 0. The computed values are:

SECTION 1.3. Separable ODEs. Modeling, page 12

Purpose. To familiarize the student with the first “big” method of solving ODEs, the
separation of variables, and an extension of it, the reduction to separable form by a
transformation of the ODE, namely, by introducing a new unknown function.

The section includes standard applications that lead to separable ODEs, namely,

1–3. Three simple separable ODEs with solutions involving , an exponential
function, (bell-shaped curves)

4. The ODE of the exponential function, having various applications, such as in
radiocarbon dating

e�x 
2

tan x
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5. A mixing problem for a single tank

6. Newton’s law of cooling

7. Torricelli’s law of outflow

In reducing to separability we consider

8. The transformation , giving perhaps the most important reducible class
of ODEs

Ince’s classical book [A11] contains many further reductions as well as a systematic
theory of reduction for certain classes of ODEs.

Comment on Problem 5
From the implicit solution we can get two explicit solutions

representing semi-ellipses in the upper half-plane, and

representing semi-ellipses in the lower half-plane. [Similarly, we can get two explicit
solutions representing semi-ellipses in the left and right half-planes, respectively.] On
the x-axis, the tangents to the ellipses are vertical, so that does not exist. Similarly
for on the y-axis.

This also illustrates that it is natural to consider solutions of ODEs on open rather than
on closed intervals.

Comment on Separability
An analytic function in a domain D of the xy-plane can be factored in D,

, if and only if in D,

[D. Scott, American Math. Monthly 92 (1985), 422–423]. Simple cases are easy to decide,
but this may save time in cases of more complicated ODEs, some of which may perhaps
be of practical interest. You may perhaps ask your students to derive such a criterion.

Comments on Application
Each of those examples can be modified in various ways, for example, by changing the
application or by taking another form of the tank, so that each example characterizes a
whole class of applications.

The many ODEs in the problem set, much more than one would ordinarily be willing
and have the time to consider, should serve to convince the student of the practical
importance of ODEs; so these are ODEs to choose from, depending on the students’
interest and background.

Comment on Footnote 3
Newton conceived his method of fluxions (calculus) in 1665–1666, at the age of 22.
Philosophiae Naturalis Principia Mathematica was his most influential work.

Leibniz invented calculus independently in 1675 and introduced notations that were
essential to the rapid development in this field. His first publication on differential calculus
appeared in 1684.

fxy f � fx fy

f (x, y) � g(x)h(y)
f (x, y)

xr(y)
yr(x)

x(y)

y � �2c � (6x)2

y � �2c � (6x)2

u � y>x

Instructor’s Manual 5
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SOLUTIONS TO PROBLEM SET 1.3, page 18

2. , so that multiplication by 4 gives the answer
. These are curves that lie between a circle and a square, outside the

circle and inside the square that touch the circle at the points of intersection with the
axes. The figure shows a quarter of such a curve for .c � 1

y4 � x4 � c
y3 dy � �x3 dx,  1

4 
y4 � �1

4 
x4 � c~

6 Instructor’s Manual

y

1

1

0

t

Sec. 1.3. Prob. 2. Quarter of the solution curve

4. Separation, integration, and taking exponents gives 

, 

and

.

6. Separation of variables, integration, and taking the reciprocal gives

.

8. From the ODE and the suggested transformation we obtain

. 

Separation of variables and integration gives

.

This implies and gives the answer 

10. From the transformation and the ODE we have

.

Separation of variables, integration, and again using the transformation gives

.

12. Separation of variables and integration gives

.
dy

1 � 4y2
� dx  and  1

2 arctan 2y � x � c~

du � dx>x, u � ln x � c,  y � ux � x (ln x � c)

yr � urx � u � 1 �
y

x
� 1 � u,   hence  urx � 1

y � v � 4x � 2 tan (2x � c) � 4x.

v � 2 tan (2x � c)

dv

v2 � 4
� dx  and  1

2 arctan 
v
2

� x � c~

yr � vr � 4 � v2,  hence  vr � v2 � 4

dy

y2
� e2x�1 dx,  �

1
y

� 1
2  e2x�1 � c~   y �

2

c � e2x�1

y � c1sin 2px

ln ƒ y ƒ � 1
2 ln ƒ sin 2px ƒ � cdy>y � p cot 2px dx,
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Hence arctan . Solving for y gives the general solution

and from the initial condition.

14. . The general solution is and from

the initial condition.

16. From the transformation and the ODE we have

.

Hence . Separation of variables and integration gives

hence .

From this and the transformation we obtain

.

From the initial condition we get , so that the answer is

.

18. On the left, integrate g from to y. On the right, integrate over x from to x.

In Prob. 12, 

.

20. Let and be the constants of proportionality for the birth rate and death rate,
respectively. Then , where is the population at time t. By
separating variables, integrating, and taking exponents,

, ln .

22. The acceleration is , and the distance traveled is 5.5 meters.
This is obtained as follows. Since (i.e., we count time from the instant the
particle enters the accelerator), we have for a motion of constant acceleration

(A)

and the velocity is 

.

From the given data we thus obtain and 

so that

.

Finally, with this a and that b, from (A) we get

.s(10�3) � 9 # 106 #
10�6

2
� 103 # 10�3 � 5.5 [m]

a � 103(104 � 103) � 107 � 106 � 9 � 106

v(10�3) � 10�3a � 103 � 104

v(0) � b � 103

v(t) � sr(t) � at � b

s(t) � a 
t 2

2
� bt

s(0) � 0
a � 9 � 106 meters>sec2

y � (kB � kD)t � c*,  y � ce(kB�kD)tdy>y � (kB � kD) dt

y(t)yr � kBy � kDy
kDkB

�
y

3

w dw � �
x

2

 (�4t) dt

x0f (x)y0

y � tan x � x � 2

y(0) � 2 � tan c � 0 and c � 0

y � v � x � 2 � 2 � x � tan (x � c)

v � tan (x � c)
dv

v2 � 1
� dx and arctan v � x � c

vr � v2 � 1

y � v � x � 2  and  yr � vr � 1 � v2

c � r0r � ce�t2dr

r
� �2t dt, ln r � �t 2 � c~

c � �2

y � 1
2 tan (2x � c)

2y � 2x � c

Instructor’s Manual 7
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24. Let be the amount of salt in the tank at time t. Then each gallon contains lb of
salt. gal of water run in during a short time , and 
is the loss of salt during . Thus 
Answer: .

26. The model is ln y with . Constant solutions are obtained from 
when . Between 0 and 1 the right side is positive (since ln ), so
that the solutions grow. For we have ln ; hence the right side is negative,
so that the solutions decrease with increasing t. It follows that is stable. The
general solution is obtained by separation of variables, integration, and two subsequent
exponentiations:

,

28. This follows from the inquality

.

30. Acceleration . Hence (initial speed of
further flight end speed upon return from peak), (height
reached after the 10 sec). At the peak, , , say; thus for the further flight
(measured from the peak), (see before).
This gives the further flight time to the peak and the further
height , approximately. Answer:

32. in Fig. 15 is the weight (the force of attraction acting on the body).
Its component parallel to the surface in , and . Hence the
friction is , and it acts against the direction of motion. From this and
Newton’s second law, noting that the acceleration is (v the velocity), we
obtain

The mass m drops out, and two integrations give

.

Since the slide is 10 meters long, the last equation with gives the time

.

From this we obtain the answer

.

34. TEAM PROJECT. (a) Note that at the origin, , so that is undefined
at the origin.

(b) .

(c) . Here the student should learn that c must not appear in the ODE.
.y>x � cyr>x � y>x2 � 0, yr � y>x

y � cx

(xy)r � y � xyr � 0, yr � �y>x

yrx>y � 0>0

v � 3.203 # 2.50 � 8.01 [meters>sec]

t � 12 # 10>3.203 � 2.50

s � 10

v � 3.203t  and  s � 3.203 
t 2

2

 � 3.203 m.

 � m # 9.80(0.500 � 0.2 # 0.866)

 m 
dv
dt

� mg sin a � 0.2mg cos a

dv>dt
0.2mg cos a

N � mg cos amg sin a
W � mg

1167 � 6245 � 7412 [m].s(t1) � 4.9t 1
2 � 6245

t � t1 � 350>9.8 � 35.7
s(t) � (g>2)t 2 � 4.9t 2, v(t) � 9.8t � 350

s � 0v � 0
y(10) � 7000>6 � 1167�

yr � 7t 2>2, y � 7t 3>6, yr(10) � 350ys � 7t

1>26 � 0.016 � 0.010 � 1>27 � 0.0078

 ln y � ce�At,  y � exp (ce�At).

 dy>(y ln y) � �A dt,  ln (ln y) � �At � c*

y � 1
y � 0y � 1

y � 0y � 0 and 1
yr � 0A � 0yr � �Ay

y(60) � 100e�0.3 � 74 [lb]
100e�0.005t.¢y>¢t � �y>200, yr � �0.005y, y(t) �¢t

�¢y � 2¢t (y>400) � ¢t y>200¢t2¢t
y>400y(t)

8 Instructor’s Manual
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(d) The right sides and are the slopes of the curves. Orthogonality is
important and will be discussed further in Sec. 1.6.

(e) No.

36. Team Project. B now depends on h, namely, by the Pythagorean theorem,

.

Hence you can use the ODE

in the text, with constant A as before and the new B. The latter makes further
calculations different from those in Example 5.

From the given outlet size and we obtain

.

Now , so that separation of variables gives

By integration,

From this and the initial conditions we obtain

.

Hence the particular solution (in implict form) is

.

The tank is empty for t such that

; hence .

For this gives

.

The tank has water level for t in the particular solution such that

.

The left side equals . This gives

.

For this yields . 
This is slightly more than half the time needed to
empty the tank. This seems physically reasonable
because if the water level is R 2, this means that 
of the total water volume has flown out, and is
left—take into account that the velocity decreases
monotone according to Torricelli’s law.

5>16
11>16>

t � 1260 sec � 21 minR � 100

t �
0.4007 � 0.9333

�42.27
 R5>2 � 0.01260R5>2

0.4007R5>2

4

3
 R 

R3>2

23>2
�

2

5
 
R5>2

25>2
� 0.9333R5>2 � 42.27t

R>2

t � 0.0221 # 1005>2 � 2210 [sec] � 37 [min]

R � 1 m � 100 cm

t �
0.9333

42.27
 R5>2 � 0.0221R5>20 � �42.27t � 0.9333R5>2

(h � 0)

4
3 

Rh3>2 � 2
5 

h5>2 � �42.27t � 0.9333R5>2

4
3 

R5>2 � 2
5 

R5>2 � 0.9333R5>2 � c

h(0) � R

4
3  

Rh3>2 � 2
5  

h5>2 � �42.27t � c.

(2Rh1>2 � h3>2) dh � �42.27 dt.

26.56 # 5>p � 42.27

dh

dt
� �26.56 #

5

p(2Rh � h2)
 1h

B(h)A � 5 cm2

hr � �26.56(A>B)1h

B(h) � pr 2 � p(R2 � (R � h)2) � p(2Rh � h2)

y>x�x>y

Instructor’s Manual 9

R R = h

r
h

Problem Set 1.3. Tank in
Team Project 36
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SECTION 1.4. Exact ODEs. Integrating Factors, page 20

Purpose. This is the second “big” method in this chapter, after separation of variables,
and also applies to equations that are not separable. The criterion (5) is basic. Simpler
cases are solved by inspection, more involved cases by integration, as explained in
the text.

Comment on Condition (5)
Condition (5) is equivalent to (6 ) in Sec. 10.2, which is equivalent to (6) in the case of
two variables x, y. Simple connectedness of D follows from our assumptions in 
Sec. 1.4. Hence the differential form is exact by Theorem 3, Sec. 10.2, part (b) and 
part (a), in that order.

Method of Integrating Factors
This greatly increases the usefulness of solving exact equations. It is important in itself
as well as in connection with linear ODEs in the next section. Problem Set 1.4 will help
the student gain skill needed in finding integrating factors. Although the method has
somewhat the flavor of tricks, Theorems 1 and 2 show that at least in some cases one can
proceed systematically—and one of them is precisely the case needed in the next section
for linear ODEs.

In Example 2, exactness is seen from

.

In Example 3, separation of variables gives

.

SOLUTIONS TO PROBLEM SET 1.4, page 26

2. Exact, .

Note that an ODE is always exact.

4. Exact. The test gives . By integration,

.

Hence

6. The new ODE is 

.

It is exact,

.My � Nx � 6(y � 1)x�4

3(y � 1)2x�4 dx � 2(y � 1)x�3 dy � 0

uu � 3re3u � cr � 3re3u,  cr � 0,  c � const

u � �e3u dr � re3u � c(u)

3e3u � 3e3u

f (x) dx � g(y) dy � 0

x4 � y4 � c

dy

y
�

dx

x
,   y � cx

0

0x
 (�sin y cosh x) � �sin y sinh x

0

0y
 cos y sinh x � 1 � �sin y sinh x.

s

10 Instructor’s Manual
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The general solution is

.

8. Exact; the test gives on both sides. Integrate M with respect to x:

Differentiate: .

Equate this to . Hence const. Answer: .

10. is exact because

.

By inspection or systematically,

.

12. shows exactness. By integration,

gives . Answer: .

14. The integrating factor gives the exact ODE

.

The general solution is

and from the initial condition.

16. Team Project. (a)
(b)

(c) , and separation:

divide by x.

(d) Separation is simplest. 

18. CAS Project. (a) Theorem 1 does not apply. Theorem 2 gives

The exact ODE is

as one could have seen by inspection—any equation of the form 

f (x) dx � g(y) dy � 0

y�2 dy � sin x dx � 0,

1

F
 
dF

dy
�

�1

y2 sin x
 (0 � 2y sin x) � �

2
y

,  F � exp��
2
y

 dy �
1

y2
.

R* � 3>y, F*(y) � y3.
x3y4 � c.F(x) � x�9>4,R � �9>(4x),y � cx�3>4.

2v dv>(1 � v2) � dx>x,  x2 � y2 � cx;

R � �2>x, F � 1>x2, x � y2>x � c, v � y>x

dy>cos2 y � �(1 � 2x) dx,  tan y � �x � x2 � c.

R* � tan y, F � 1>cos y. Separation:

ey cosh x � c

c � 1

xa�1yb�1 � c

(a � 1) xayb�1 dx � (b � 1) xa�1yb dy � d(xa�1yb�1) � 0

y � 2e�x2

c � 2y(0) � 2

yex2

� c.

(2xyex2

)y � 2xex2

� (ex2

)x

y sin (x � y) � c

 � [y cos (x � y) � sin (x � y)]x

 [y cos (x � y)]y � cos (x � y) � y sin (x � y)

y cos (x � y) dx � [y cos (x � y) � sin (x � y)] dy � 0

ex cos y � ckr � 0, k �N � �ex sin y

uy � �ex sin y � kru � ex cos y � k(y).

�ex sin y

(y � 1) 2x�3 � c
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is exact! We now obtain

(b) Yes,

.

(c) The vertical asymptotes that some CAS programs draw disturb the graph. From
the solution in (b) the student should conclude that for each initial condition 
with there is a unique particular solution because from (b),

.

(d) .

SECTION 1.5. Linear ODEs. Bernoulli Equation. Population Dynamics,
page 27

Purpose. Linear ODEs are of great practical importance, as Problem Set 1.5 illustrates
(and even more so are second-order linear ODEs in Chap. 2). We show that the
homogeneous ODE of the first order is easily separated and the nonhomogeneous ODE
is solved, once and for all, in the form of an integral (4) by the method of integrating
factors. Of course, in simpler cases one does not need (4), as our examples illustrate.

Comment on Notation
We write 

seems standard, suggests “right side.” The notation

used in some calculus books (which are not concerned with higher order ODEs) would
be shortsighted here because later, in Chap. 2, we turn to second-order ODEs

where we need on the left, thus in a quite different role (and on the right we would
have to choose another letter different from that used in the first-order case).

Comment on Content
Bernoulli’s equation appears occasionally in practice, so the student should remember how
to handle it.

A special Bernoulli equation, the Verhulst equation, plays a central role in population
dynamics of humans, animals, plants, and so on, and we give a short introduction to this
interesting field, along with one reference in the text.

q(x)

ys � p(x)yr � q(x)y � r(x),

yr � p(x)y � q(x)

r(x)p(x)

yr � p(x)y � r(x).

y � 0

c� �
1 � y0 cos x0

y0

y0 � 0
y(x0) � y0

yr � y2 sin x,  
dy

y2
� sin x dx,  �

1
y

� �cos x � c,  y �
1

cos x � c�
˛

 u � cos x �
1
y

� c.

 uy � kr(y) �
1

y2
,  k � �

1
y
,

 u � ��sin x dx � cos x � k(y)

12 Instructor’s Manual
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Riccati and Clairaut equations are less important than Bernoulli’s, so we have put
them in the problem set; they will not be needed in our further work.

Input and output have become common terms in various contexts, so we thought this
a good place to mention them.

Problems 15–20 express properties that make linearity important, notably in obtaining
new solutions from given ones. The counterparts of these properties will, of course,
reappear in Chap. 2.

Comment on Footnote 7
Eight members of the Bernoulli family became known as mathematicians; for more details,
see p. 220 in Ref. [GenRef 2] listed in App. 1.

Examples in the Text. The examples in the text concern the following.
Example 1 illustrates the use of the integral formula (4) for the linear ODE (1).
Example 2 deals with the RL-circuit for which the underlying physics is rather simple

and straightforward and the solution exhibits exponential approach to a constant value
. Several particular solutions are shown in Fig. 19.

Example 3 on hormone level is an input–output problem, eventually giving a periodic
steady-state solution, after an exponential term has decreased to zero, theoretically as

, practically after a very short time, as shown in Fig. 20.
Example 4 concerns the logistic or Verhulst ODE, perhaps the practically most important

case of a Bernoulli ODE. The Bernoulli ODE is reduced to a linear ODE by setting
, giving (10).

Example 5 concerns population dynamics, based on Malthus’s and Verhulst’s ODEs,
both of which are autonomous. This concept is defined in connection with (13) and will
be of central interest in the theory and application of systems of ODEs in Chap. 4, in
particular, in Sec. 4.5 when we shall discuss the Lotka–Volterra population model.

Problem Set 1.5 stikes a balance between formal problems (3–13) for linear ODEs,
experimentation (Prob. 14), some basic theory (15–21), formal problems (22–28) for
nonlinear ODEs, a project (29) on transformation, two ODEs of lesser importance (Clairaut
and Riccati ODEs in Team Project 30, showing singular solutions), and, finally, a variety
of modeling problems (31–40) taken from various fields.

SOLUTIONS TO PROBLEM SET 1.5, page 34

4. The standard form (1) is , so that (4) gives

6. From (4) with we obtain

.

It is perhaps worthwhile mentioning that integrals of this type can more easily be
evaluated by undetermined coefficients. Also, the student should verify the result by
differentiation, even if it was obtained by a CAS. From the initial condition we obtain

hence

The answer can be written

y � 2ep>2�2x � cos 2x � sin 2x.

c � 2ep>2.y (1
4 
p) � ce�p>2 � 0 � 1 � 3;

y � e�2x c �e2x 4 cos 2x dx � c d � e�2x[e2x(cos 2x � sin 2x � c]

p � 2, h � 2x, r � 4 cos 2x

� ce2x � 2x � 1.y � e2x c �e�2x (�4x)  dx � c d
yr � 2y � �4x

u � y1�a (a � 1)

t : �

(48>11 A)

Instructor’s Manual 13
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8. In (4) we have , so that (4) gives

The initial condition gives ; hence c 100. The particular
solution is

The factor 0.01, which we include in the exponent, has the effect that the graph of y
shows a long transition period. Indeed, it takes to let the exponential function

decrease to 0.01. Choose the x-interval of the graph accordingly.

10. The standard form (1) is

Hence , and (4) gives the general solution

To evaluate the integral, observe that the integrand is of the form

that is,

Hence the integral has the value . This gives the general solution

.

The initial condition gives from this

hence

The answer is .

12. is the general solution. The initial condition gives .

14. CAS Experiment (a) if is undefined
at , the point at which the “waves” of accumulate; the factor x makes
them smaller and smaller. Experiment with various x-intervals.
(b) need not be an integer. Try .
Try and see how the “waves” near 0 become larger and larger.

16. Substitution gives the identity .
These problems are of importance because they show why linear ODEs are

preferable over nonlinear ones in the modeling process. Thus one favors a linear ODE
over a nonlinear one if the model is a faithful mathematical representation of the
problem. Furthermore, these problems illustrate the difference between homogeneous
and nonhomogeneous ODEs.

0 � 0

n � �1
n � 1

2y � xn3sin (1>x) � c4. y(2>p) � (2>p)n. n

sin (1>x)x � 0
y(2>p) � 2>p. yy � x sin (1>x) � cx. c � 0

c � 1y � cx�4
 �  x4

y � 1
3 � e3�3 tan x

c � e3.y(1
4p) � 1

3 � ce�3 � 4
3 ˛

;

y � e�3 tan x
 [1

3 e
3 tan x � c] � 1

3 � ce�3 tan x

1
3  

e3 tan x

1
3 (e

3 tan x)r.

1
3 (3 tan x)r e3 tan x;

y � e�3 tan x c � e3 tan x

cos2 x
 dx � c d .

h � 3 tan x

yr �
3

cos2 x
 y �

1

cos2 x
 .

e�0.01x
x � 460

y � 100 (1 � e�0.01x ) cos x.

�y(0) � �100 � c � 0

y � (cos x) c � cos x
cos x

 e�0.01x dx � c d � [�100 e�0.01x � c] cos x.

p � tan x, h � �ln (cos x), eh � 1>cos x
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18. We obtain

20. The sum satisfies the ODE with on the right. This is important as the key to
the method of developing the right side into a series, then finding the solutions
corresponding to single terms, and finally, adding these solutions to get a solution of
the given ODE. For instance, this method is used in connection with Fourier series,
as we shall see in Sec. 11.5.

22. Bernoulli equation. First solution method: Transformation to linear form. Set
Then . Multiplication by gives the

linear ODE in standard form

. General solution .

Hence the given ODE has the general solution 

.

From this and the initial condition we obtain 

.

Second solution method: Separation of variables and use of partial fractions.

.

Integration gives

ln .

Taking exponents on both sides, we obtain

.

We now continue as before.

24. ; hence 

26. This ODE can simply be solved by separating variables, 

hence

with from the initial condition.
As an alternative, we can regard it as an ODE for the unknown function 

and solve it by (4) with x and y interchanged.
x � x(y)

c � �1

y � arcsin [ĉ1x � 12]  or  x � 1 � c sin y

cot y dy � dx>1x � 12,  ln ƒ sin y ƒ � ln ƒ x � 1 ƒ � c�

u � e�2x c��  e2x 2x  dx � c d � 1
2 � x � ce�2x,  y � 1u

u � y2, yyr � y2 � �x, 1
2 ur � u � �x, ur � 2u � �2x

y � 1

y
� 1 �

1
y

� c�ex,  
1
y

� 1 � c�ex,  y �
1

1 � cex

ƒ y � 1 ƒ � ln ƒ y ƒ � ln ` y � 1

y
` � x � c*

dy

y(y � 1)
� a 1

y � 1
�

1
y
b dy � dx

y(0) � 1>(c � 1) � �1
3,  c � �4,  Answer:  y � 1>(1 � 4ex)

y(0) � �1
3,

y � 1>(cex � 1)

u � cex � 1ur � u � �1

�u2yr � y � �ur>u2 � 1>u � 1>u2y � 1>u.

r1 � r2

 � 0.

 � r � r

 � (yr1 � py1) � (yr2 � py2)

  ( y1 � y2)r � p(y1 � y2) � yr1 � yr2 � py1 � py2
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28. Using the given transformation , we obtain the linear ODE

which we can solve by (4) with z instead of y,

.

From this we obtain .

30. Team Project. (a) reduces the Riccati equation to a Bernoulli equation
by removing the term . The second transformation, , is the usual one for
transforming a Bernoulli equation with on the right into a linear ODE.

Substitute into the Riccati equation to get

.

Since Y is a solution, . There remains

.

Multiplication by gives . Reshuffle terms to get

,

the linear ODE as claimed.
(b) Substitute to get , which is true.
Now substitute . This gives

.

Most of the terms cancel on both sides. There remains .
Multiplication by finally gives . The general solution is

and . Of course, instead performing this calculation we could have used
the general formula in (a), in which

and .

(c) By differentiation, 
. By substitution, , a family

of straight lines. (B) . By substitution into the given ODE,
, the envelope of the family; see

Fig. 6 in Problem Set 1.1.

32. follows from Newton’s law of cooling. models the effect of
heating or cooling. calls for cooling; hence should be negative
in this case; this is true, since is assumed to be negative in this formula. Similarly
for heating, when heat should be added, so that the temperature increases.

The given model is of the form

.Tr � kT � K � k1C cos (p>12)t

k2

k2(T � Tw)T � Tw

k2(T � Tw)k1(T � Ta)

x2>4 � x2>2 � x2>4 � c* � 0, c* � 0, y � x2>4
yr � x>2, y � x2>4 � c*

c2 � xc � cx � a � 0, a � �c2, y � cx � c2y � cx � a
2yrys � yr � xys � yr � 0, ys(2yr � x) � 0. (A) ys � 0,

�g � �x22Yg � p � 2x(�x2) � 2x3 � 1 � 1

y � x � 1>u

u � ce�x � x2 � 2x � 2

ur � u � x2�u2
�ur>u2 � 1>u � �x2>u2

1 � ur>u2 � (2x3 � 1)(x � 1>u) � �x2(x2 � 2x>u � 1>u2) � x4 � x � 1

y � x � 1>u
1 � 2x4 � x � �x4 � x4 � x � 1y � Y � x

ur � (2Yg � p)u � �g

ur � pu � �g(2Yu � 1)�u2

�ur>u2 � p>u � g (˛2Y>u � 1>u2)

Y r � pY � gY2 � h

Yr � ur>u2 � p1Y � 1>u2 � g˛(Y2 � 2Y>u � 1>u22 � h

y � Y � 1>u
y2

v � 1>uh(x)
y � Y � v
y � 1z

z � xe�x a �1
x

 exxex dx � cb � xe�x112  
e2x � c2 � cxe�x � 1

2  
xex

zr � a1 �
1
x
b z � xex,

y2 � z
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This can be seen by collecting terms and introducing suitable constants, 
(because there are two terms involving T ), and . The general
solution is

,

where . The first term solves the homogeneous ODE 
and decreases to zero. The second term results from the constants A (in ), , and P.
The third term is sinusoidal, of period 24 hours, and time-delayed against the outside
temperature, as is physically understandable.

34. , where and y is the proportion of infected persons.
Equilibrium solutions are and . The first, , is unstable because

for negative y. The solution is stable
because . The general solution is

It approaches 1 as . This means that eventually everybody in the population
will be infected.

36. The model is

where . Hence the general solution is given by (12) in Example 4 with A
replaced by . The equilibrium solutions are obtained from ; hence
they are and . The population remains unchanged under
harvesting, and the fraction of it can be harvested indefinitely—hence the name.

38. For the first 3 years you have the solution

from Prob. 36. The idea now is that, by continuity, the value at the end of the
first period is the initial value for the solution during the next period. That is,

.

Now is the solution of (no fishing!). Because of the initial condition
this gives

.

Check the continuity at by calculating

.

Similarly, for t from 6 to 9 you obtain

.

This is a period of fishing. Check the continuity at :

.

This agrees with

.y2(6) � 4>(4 � e�3 � 3e�5.4)

y3(6) � 4>(5 � e0 � e�3 � 3e�5.4)

t � 6

y3 � 4>(5 � e4.8�0.8t � e1.8�0.8t � 3e�0.6�0.8t)

y2(3) � 4>(4 � e0 � 3e�2.4)

t � 3

y2 � 4>(4 � e3�t � 3e0.6�t)

yr � y � y2y2

y2(3) � y1(3) � 4>(5 � 3e�2.4)

y2

y1(3)

y1 � 4>(5 � 3e�0.8t)

Hy2

y2y2 � K>By1 � 0
yr � 0K � A � H

K � A � H

yr � Ay � By2 � Hy � Ky � By2 � y(K � By)

t : �

y �
1

1 � ce�kt.

f (y) � 0 if 0 � y � 1 and f (y) � 0 if y � 1
y � 1f (y) � 0 if 0 � y � 1 but f (y) � 0

y � 0y � 1y � 0
k � 0yr � ky(1 � y) � f (y)

TwTa

Tr � kTL � k1C>(k2 � p2>144)

T � cekt � K>k � L(�k cos (pt>12) � (p>12) sin (pt>12))

K � �k1A � k2Tw � P
k � k1 � k2
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40. Let y denote the amount of fresh air measured in cubic feet. Then the model is obtained
from the balance equation

“Inflow minus Outflow equals the rate of change”;

that is,

.

The general solution of this linear ODE is

.

The initial condition is (initially no fresh air) and gives

; hence .

The particular solution of our problem is

.

This equals 90% if t is such that

thus if .

SECTION 1.6. Orthogonal Trajectories. Optional, page 36

Purpose. To show that families of curves can be described by ODEs
and the switch to produces as general solution the orthogonal

trajectories. This is a nice application that may also help the student to gain more self-
confidence, skill, and a deeper understanding of the nature of ODEs.

We leave this section optional, for reasons of time. This will cause no gap.
The reason ODEs can be applied in this fashion results from the fact that general

solutions of ODEs involve an arbitrary constant that serves as the parameter of this one-
parameter family of curves determined by the given ODE, and then another general
solution similarly determines the one-parameter family of the orthogonal trajectories.

Curves and their orthogonal trajectories play a role in several physical applications (e.g.,
in connection with electrostatic fields, fluid flows, and so on).

Problem Set 1.6 should help the student to obtain skill in representing families of curves
(Probs. 1–3), finding trajectories (4–10), and understanding some basic physical and
geometric applications of trajectories (11–16). This will also involve the Cauchy–Riemann
equations, which are basic in complex analysis.

SOLUTIONS TO PROBLEM SET 1.6, page 38

2. gives a circle of radius r with center 

on the cubic parabola. Since this center has distance , we have
.

4. . Note that these curves and their OTs are
congruent. This is typical of ODEs with f not depending on y.yr � f (x)
yr � 2x, y~r � �1>(2x), y~ � �1

2 ln x � c~

r 2 � c2 � c6
r � 2c2 � c6

(x0, y0) � (c, c3)(x � c)2 � ( y � c3)2 � r 2 � 0

y~r � �1>f (x, y~)yr � f (x, y)
F (x, y, c) � 0

t � (ln 0.1)>(�0.03) � 77 [min]

e�0.03t � 0.1

y � 20,000(1 � e�0.03t)

c � �20,000y(0) � c � 20,000 � 0

y(0) � 0

y � ce�0.03t � 20,000

yr � 600 �  
600

20,000
 y � 600 � 0.03y
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6. Differentiating the given formula, we obtain

. Thus .

This is the differential equation of the given hyperbolas. Hence the differential
equation of the orthogonal trajectories is

.

Separation of variables and integration gives

.

Answer: The hyperbolas are the orthogonal trajectories of the given
hyperbolas.

8. Squaring the given formula, differentiating, and solving algebraically for , we obtain

.

This is the differential equation of the given curves. Hence the differential equation
of the orthogonal trajectories is

.

By separation of variables and integration we obtain

ln .

Taking exponents gives the answer

.

10. . Solve algebraically for 2c:

.

Differentiation gives

.

By algebra,

.

Solve for :

� .

This is the ODE of the given family. Hence the ODE of the trajectories is

.y~r �
y~2 � x2

2xy~
�

1

2
 ay~

x
�

x

y~
b

ay2 � x2

y2
b �

�2xy

y2 � x2
yr � �

2x

y

yr

yra� x2

y2
� 1b � �

2x

y
˛

2x

y
�

x2yr
y2

� yr � 0

x2 � y2

y
�

x2

y
� y � 2c

x2 � y2 � 2cy � 0

y~ � c*e�2x 

ƒ y~ ƒ � �2x � c~

y~r � �2y~

y2 � x � c,  2yyr � 1,  yr �
1

2y

yr

x2 � y~2 � c*

y~
 
dy � x dx,   1

2  
y~2 � 1

2  
x2 � c~

y~r �
x

y~

yr � �
y

x
xyr � y � 0
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To solve this equation, set . Then

.

Subtract u on both sides to get

.

Now separate variables, integrate, and take exponents, obtaining

.

Write and multiply by on both sides of the last equation. This gives

.

The answer is

.

Note that the given circles all have their centers on the y-axis and pass through the
origin. The result shows that their orthogonal trajectories are circles, too, with centers
on the x-axis and passing through the origin.

12. Setting gives from the equation ;
hence and , which verifies that those circles all pass through and 1,
each of them simultaneously through both points. Subtracting on both sides of the
given equation, we obtain

.

Emphasize to your class that the ODE for the given curves must always be free of c.
Having accomplished this, we can now differentiate. This gives

.

This is the ODE of the given curves. Replacing with and y with , we obtain
the ODE of the trajectories:

� .

Multiplying this by , we get

.

Multiplying this by , we obtain

.
2y~y~r

x
� 1 �

1

x2
�

y~2

x2
�

d

dx
 ay~2

x
b � 1 �

1

x2
� 0

y~2>x2

2xy~r
y~

�
x2 � 1

y~2
� 1 � 0

y~r

(�y~r) � 0
2x

y~
� ax2 � 1

y~2
� 1b

y~�1>y~ryr

2x

y
� ax2 � 1

y2
� 1b yr � 0

x2 � y2 � 2cy � 1,  x2 � y2 � 1 � 2cy,  
x2 � 1

y
� y � 2c

c2
�1x � 1x � �1

x2 � c2 � 1 � c2x2 � (y � c) 2 � 1 � c2y � 0

(x � c3)2 � y~2 � c3
2

y~2 � x2 � c2x

x2u � y~>x

2u du

u2 � 1
� �

dx

x
,  ln (u2 � 1) � �ln ƒ x ƒ � c1,  u2 � 1 �

c2

x

xur � �
u2 � 1

2u

y~r � xur � u �
1

2
 au �

1
u
b

u � y~>x
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By integration,

. Thus, .

We see that these are the circles

dashed in Fig. 25, as claimed.

14. By differentiation,

.

Hence the ODE of the orthogonal trajectories is

. By separation, .

Integration and taking exponents gives

ln .

This shows that the ratio has substantial influence on the form of the trajectories.
For the given curves are circles, and we obtain straight lines as trajectories.

gives quadratic parabolas. For higher integer values of we obtain
parabolas of higher order. Intuitively, the “flatter” the ellipses are, the more rapidly
the trajectories must increase to have orthogonality.

Note that our discussion also covers families of parabolas; simply interchange the
roles of the curves and their trajectories.

Note further that, in the light of the present answer, our example in the text turns
out to be typical.

16. . Since c is just an additive constant, the statement about the curves
follows; these curves are obtained from any one of them by translation in the 
y-direction. Similarly for the OTs, whose ODE is with the function on
the right independent of .

SECTION 1.7. Existence and Uniqueness of Solutions 
for Initial Value Problems, page 38

Purpose. To give the student at least some impression of the theory that would occupy
a central position in a more theoretical course on a higher level.

Short Courses. This section can be omitted.

Comment on Iteration Methods
Iteration methods were used rather early in history, but it was Picard who made them
popular. Proofs of the theorems in this section (given in books of higher level, e.g., [A11])
are based on the Picard iteration (see CAS Project 6).

Iterations are well suited for the computer because of their modest storage demand and
usually short programs in which the same loop or loops are used many times, with different
data. Because integration is generally not difficult for a CAS, Picard’s method has gained
some popularity during the past few decades.

y~
y~r � �1>f (x)

y � �f (x) dx � c

a2>b2a2>b2 � 2
a2 � b2

a2>b2

ƒ y~ ƒ �
a2

b2
 ln ƒ x ƒ � c**,  y~ � c*xa2>b2

dy~

y~
�

a2

b2
 
dx

x
y~r �

a2y~

b2x

2x

a2
�

2yyr
b2

� 0,  yr � �
2x>a2

2y>b2
� �

b2x

a2y

y~2 � (x � c*)2 � c*2 � 1

y~2 � x2 � 1 � 2c*x
y~2

x
� x �

1
x

� 2c*
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Example 1 is simple, involving only , and is typical inasmuch as it illustrates
that the actual interval of existence is much larger than the interval guaranteed by Existence
Theorem 1.

Example 2 shows that IVPs violating uniqueness can be constructed relatively easily.
Lipschitz and Hölder conditions play a basic role in the theory of PDEs on a level

substantially higher than that of our Chap.12.

SOLUTIONS TO PROBLEM SET 1.7, page 42

2. The initial condition is given at the point . The coefficient of is 0 at that
point, so from the ODE we already see that something is likely to go wrong. Separating
variables, integrating, and taking exponents gives

.

This last expression is the general solution. It shows that for any c. Hence
the initial condition cannot be satisfied. This does not contradict the theorems
because we first have to write the ODE in standard form:

.

This shows that f is not defined when (to which the initial condition refers).

4. For we still get no solution, violating the existence as in Prob. 2. For 
we obtain infinitely many solutions, because c remains unspecified. Thus in this case
the uniqueness is violated. Neither of the two theorems is violated in either case.

6. CAS Project. (b)

(c)

(d) . It approximates . General solution .

(e) would be a good candidate to begin with. Perhaps you write the initial
choice as ; then corresponds to the choice in the text, and you see how
the expressions in a are involved in the approximations. The conjecture is true for
any choice of a constant (or even of a continuous function of x).

It was mentioned in footnote 10 that Picard used his iteration for proving his
existence and uniqueness theorems. Since the integrations involved in the method
can be handled on the computer quite efficiently, the method has gained in importance
in numerics.

8. The student should get an understanding of the “intermediate” position of a Lipschitz
condition between continuity and (partial) differentiability.

The student should also realize that the linear equation is basically simpler than
the nonlinear one. The calculation is straightforward because we have

f (x, y) � r(x) � p(x)y

a � 0y0 � a
yr � y

y � (x � c)2y � 0y � (x � 1)2, y � 0

y(x) �
1

1 � 2x
� 1 � 2x � 4x2 � 8x3 � . . .

y0 � 1, y1 � 1 � 2x, y2 � 1 � 2x � 4x2 �
8x3

3
, . . .

yn �
x2

2!
�

x3

3!
� . . . �

xn�1

(n � 1)!
, y � ex � x � 1

k � 0k � 0

x � 2

yr � f (x, y) �
2y

x � 2

y(1) � 1
y(2) � 0

dy

y
�

2 dx

x � 2
,  ln ƒ y ƒ � 2 ln ƒ x � 2 ƒ � c*,  y � c(x � 2)2

yrx � 2

y � tan x
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and this implies that

(A) .

This becomes a Lipschitz condition if we note that the continuity of for
implies that is bounded, say for all these x. Taking

absolute values on both sides of (A) now gives

.

10. By separation and integration,

.

Taking exponents gives the general solution

.

From this we can see the answers:

No solution if .

A unique solution if equals any .

Infinitely many solutions if .

This does not contradict the theorems because

is not defined when .

SOLUTIONS TO CHAP. 1 REVIEW QUESTIONS AND PROBLEMS, page 43

12. . Note that the solution curves are congruent.

14. . The figure also shows the solution curves through 
.y(�1) � 1], (1, 0.1), (1, 1), and (1, 2)

(�1, 1) [thus,y � x2 � cx

y � tanh (x � c)

x � 0 or 1

f (x, y) �
2x � 1

x2 � x

y(0) � 0 or y(1) � 0

y0 and x0 � 0 or x0 � 1y(x0)

y(0) � k � 0 or y(1) � k � 0

y � c(x2 � x)

dy

y
�

2x � 1

x2 � x
 dx,  ln ƒ y ƒ � ln ƒ x2 � x ƒ � c*

ƒ f (x, y2) � f (x, y1) ƒ 	 M ƒ y2 � y1 ƒ

ƒ p(x) ƒ 	 Mp(x)ƒ x � x0 ƒ 	 a
p(x)

f (x, y2) � f (x, y1) � �p(x)(y2 � y1)

Instructor’s Manual 23

1

–1

–2

2

1–1 0–2 2

y

x

y(x)

Problem 14. Direction field of xy r � y � x˛

2
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16. Solution . Computations:y � 1>(1 � 4e�x)

24 Instructor’s Manual

Error

0 0.2000 0
0.1 0.2160 0.0005
0.2 0.2329 0.0010
0.3 0.2509 0.0015
0.4 0.2696 0.0021
0.5 0.2893 0.0026
0.6 0.3098 0.0032
0.7 0.3312 0.0037
0.8 0.3534 0.0041
0.9 0.3762 0.0046
1.0 0.3997 0.0048

ynxn

18. .

20. This Bernoulli equation (a Verhulst equation if ) can be reduced to linear
form, as shown in Example 4 of Sec. 1.5 (except for the notation). The general solution
is (see (12) in Sec. 1.5)

22. The general solution of this linear differential equation is obtained as explained in
Sec. 1.6,

From this and the initial condition we have . Answer:

24. To solve this Bernoulli equation we set . Then , 
Substitution into the given ODE gives

.

We now multiply by , obtaining

. General solution: .u � cex � 2ur � u � �2

�2u3>2

�1
2  

u�3>2 ur � 1
2  

u�1>2 � u�3>2

yr � �1
2u�3>2 ur.y � u�1>2u � y�2

y � (x � 4.3)e�2x2

.

c � �4.3y(0) � �4.3

y � e�2x2 a �e2x2

e�2x2 dx � cb � 1x � c2e�2x2

y �
1

ce�ax � b>a
.

b � 0

y � ce0.4x � 25 cos x � 10 sin x

Problem 16. Solution curve and computed values

0.4

0.35

0.3

0.25

0.2
0.20 0.4 0.6 0.8 1 x

y
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Hence

From this and the initial condition y(0) we get Answer:

26. Theorem 1 in Sec. 1.4 gives the integrating factor . We thus obtain the exact
equation

By inspection or systematically by integration (as explained in Sec. 1.4), we obtain 

; thus, .

From this and the initial condition we get . Answer:

28. We proceed as in Sec. 1.3. The time rate of change equals the inflow of
salt minus the outflow per minute.

yr � 20 �
20

500
  y.

yr � dy>dt

cosh y � 1
3  

x.

1
3

# 1 � c

1
x

 cosh y � cd a1
x

 cosh yb � 0

1
x

 sinh y dy �
1

x2
 cosh y dx � 0.

F � 1>x2

y �
1

22 � 7ex
.

c � 7.1
3�

y � u�1>2 �
1

2cex � 2
.
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The initial condition is . This gives the particular solution

The limiting value is 500 lb; are 475 lb, so that we get the condition

from which we can determine

so it will take a little over an hour.

30. By Newton’s law of cooling, since the surrounding temperature is and the
initial temperature of the metal is , we first obtain

k can be determined from the condition that ; that is,

so that . With this value of k we can now find the time at
which the metal has the temperature .

Answer: The temperature of the metal has practically reached that of the boiling water
after 13.4 min.

99.9 � 100 � 80e�0.5t,  0.1 � 80e�0.5t,  t �
ln 800

0.5
� 13.4.

99.9°C
k � ln (48.5>80) � �0.500

T(1) � 100 � 80ek � 51.5,

T(1) � 51.5

T(t) � 100 � 80ekt.

T(0) � 20
100°C

t � 25 ln 
420

25
� 70.5 [min];

500 � 420e�0.04t � 475,

95%

y � 500 � 420e�0.04t.

y(0) � 80
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