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Chapter 2: Probability 
 
Section 2.2: Sample Spaces and the Algebra of Sets 
 
2.2.1 S =  ( , , ), ( , , ), ( , , ), ( , , ), ( , , ), ( , , ), ( , , ), ( , , )s s s s s f s f s f s s s f f f s f f f s f f f  
 A =  ( , , ), ( , , )s f s f s s ; B =  ( , , )f f f  
 
2.2.2 Let (x, y, z) denote a red x, a blue y, and a green z.   

Then A =  (2,2,1), (2,1,2), (1,2,2), (1,1,3), (1,3,1), (3,1,1)  
 
2.2.3 (1,3,4), (1,3,5), (1,3,6), (2,3,4), (2,3,5), (2,3,6) 
 
2.2.4 There are 16 ways to get an ace and a 7, 16 ways to get a 2 and a 6, 16 ways to get a 3 and a 

5, and 6 ways to get two 4’s, giving 54 total. 
 
2.2.5 The outcome sought is (4, 4). It is “harder” to obtain than the set {(5, 3), (3, 5), (6, 2), (2, 6)} 

of other outcomes making a total of 8. 
 
2.2.6 The set N of five card hands in hearts that are not flushes are called straight flushes. These are 

five cards whose denominations are consecutive. Each one is characterized by the lowest 
value in the hand. The choices for the lowest value are A, 2, 3, …, 10. (Notice that an ace can 
be high or low). Thus, N has 10 elements. 

 
2.2.7 P = {right triangles with sides (5, a, b): a2 + b2 = 25} 
 
2.2.8 A = {SSBBBB, SBSBBB, SBBSBB, SBBBSB, BSSBBB, BSBSBB, BSBBSB, BBSSBB, BBSBSB, 

BBBSSB} 
 
2.2.9 (a) S = {(0, 0, 0, 0) (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 1, 0),  
  (0, 1, 1, 1), (1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 0, 1, 1, ), (1, 1, 0, 0), (1, 1, 0, 1),  
  (1, 1, 1, 0), (1, 1, 1, 1, )} 
 (b) A = {(0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 1, 0, 0, )} 
 (c) 1 + k 
 
2.2.10 (a) S = {(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (2, 4), (4, 1), (4, 2), (4, 4)} 
 (b) {2, 3, 4, 5, 6, 8} 
 
2.2.11 Let p1 and p2 denote the two perpetrators and i1, i2, and i3, the three in the lineup who are 

innocent.  
 Then S =  1 1 1 2 1 3 2 1 2 2 2 3 1 2 1 2 1 3 2 3( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , )p i p i p i p i p i p i p p i i i i i i . 
 The event A contains every outcome in S except (p1, p2). 
 
2.2.12 The quadratic equation will have complex roots—that is, the event A will occur—if  

b2  4ac < 0. 
 
2.2.13 In order for the shooter to win with a point of 9, one of the following (countably infinite) 

sequences of sums must be rolled:  (9,9), (9, no 7 or no 9,9), (9, no 7 or no 9, no 7 or no 9,9), 
… 
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2.2.14 Let (x, y) denote the strategy of putting x white chips and y red chips in the first urn (which 
results in 10  x white chips and 10  y red chips being in the second urn).  Then  
S =  ( , ) : 0,1,...,10, 0,1,...,10,  and 1 19x y x y x y     .  Intuitively, the optimal strategies 
are (1, 0) and (9, 10). 

 
2.2.15 Let Ak be the set of chips put in the urn at 1/2k minute until midnight. For example,  
 A1 = {11, 12, 13, 14, 15, 16, 17, 18, 19, 20}. Then the set of chips in the urn at midnight is 

 
1
( { 1})k

k

A k




   . 

 
2.2.16 move arrow on first figure raise B by 1 

  
 
2.2.17 If x2 + 2x  8, then (x + 4)(x  2)  0 and A = {x:  4  x  2}.  Similarly, if x2 + x  6, then 

(x + 3)(x  2)  0 and B = {x:  3  x  2).  Therefore, A  B = {x:  3  x  2} and  
A  B = {x:  4  x  2}. 

 
2.2.18 A  B  C = {x:  x = 2, 3, 4} 
 
2.2.19 The system fails if either the first pair fails or the second pair fails (or both pairs fail).  For 

either pair to fail, though, both of its components must fail.  Therefore,  
A = (A11  A21)  (A12  A22). 

 
2.2.20 (a)     (b) 
 
 
 (c) empty set   (d) 
 
2.2.21 40 
 
2.2.22 (a) {E1, E2} (b)  {S1, S2, T1, T2}   (c)  {A, I} 
 
2.2.23 (a) If s is a member of A  (B  C) then s belongs to A or to B  C. If it is a member of A or 

of B  C, then it belongs to A  B and to A  C.  
Thus, it is a member of (A  B)  (A  C).  

  Conversely, choose s in (A  B)  (A  C). If it belongs to A, then it belongs to  
A   (B  C). If it does not belong to A, then it must be a member of B  C.  
In that case it also is a member of A  (B  C). 
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 (b) If s is a member of A  (B  C) then s belongs to A and to B  C. If it is a member of B, 
then it belongs to A  B and, hence, (A  B)  (A  C). Similarly, if it belongs to C, it is 
a member of (A  B)  (A  C). Conversely, choose s in (A  B)  (A  C). Then it 
belongs to A. If it is a member of A  B then it belongs to A  (B  C). Similarly, if it 
belongs to A  C, then it must be a member of A  (B  C). 

 
2.2.24 Let B = A1  A2  …  Ak. Then 1 2 ...C C C

kA A A    = (A1  A2  … Ak)C = BC. Then the 
expression is simply B  BC = S. 

 
2.2.25 (a) Let s be a member of A  (B  C).  Then s belongs to either A or B  C (or both).  If s 

belongs to A, it necessarily belongs to (A  B)  C.  If s belongs to B  C, it belongs to 
B or C or both, so it must belong to (A  B)  C.  Now, suppose s belongs to  
(A  B)  C.  Then it belongs to either A  B or C or both.  If it belongs to C, it must 
belong to A  (B  C).  If it belongs to A  B, it must belong to either A or B or both, so 
it must belong to A  (B  C). 

 (b) Suppose s belongs to A  (B  C), so it is a member of A and also B  C. Then it is 
amember of A and of B and C. That makes it a member of (A  B)  C. Conversely, if s 
is a member of (A  B)  C, a similar argument shows it belongs to A  (B  C). 

 
2.2.26 (a) AC  BC  CC 
 (b) A  B  C 
 (c) A  BC  CC 
 (d) (A  BC  CC)  (AC  B  CC)  (AC  BC  C) 
 (e) (A  B  CC)  (A  BC  C)  (AC  B  C) 
 
2.2.27 A is a subset of B. 
 
2.2.28 (a) {0}  {x: 5  x  10} 
 (b) {x: 3  x < 5} 
 (c) {x: 0 < x  7} 
 (d) {x: 0 < x < 3} 
 (e) {x: 3  x  10} 
 (f) {x: 7 < x  10} 
 
2.2.29 (a) B and C 
 (b) B is a subset of A. 
 
2.2.30 (a) A1  A2  A3 
 (b) A1  A2  A3 
 The second protocol would be better if speed of approval matters. For very important issues, 

the first protocol is superior. 
 
2.2.31 Let A and B denote the students who saw the movie the first time and the second time, 

respectively.  Then N(A) = 850, N(B) = 690, and [( ) ]CN A B  = 4700   
 (implying that N(A  B) = 1300).  Therefore, N(A  B) = number who saw movie twice  
 = 850 + 690  1300 = 240. 
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2.2.32 (a)  
 
 
 
 
 
 
 (b)  
 
 
 
 
 
 
 
 
2.2.33 (a)  
 
 
 
 
 
 
 (b) 
 
 
 
 
 
 
 
 
2.2.34 (a)  
 
 
 
 
 
             A  (B   C)                      (A  B)   C  
  
 (b)  
 
 
 
 
 
           A  (B   C)                       (A  B)  C  
 
 
2.2.35 A and B are subsets of A  B. 
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2.2.36 (a) 
 
      ( )C CA B = AC  B 
 
 
 
 
 (b)  
 
      ( )C CB A B A B     
 
 
 
 
 (c)  
 
      ( )C CA A B A B     
 
 
 
 
2.2.37 Let A be the set of those with MCAT scores  27 and B be the set of those with GPAs  3.5. 

We are given that N(A) = 1000, N(B) = 400, and N(A  B) = 300.  
Then ( )C CN A B  = [( ) ]CN A B = 1200  N(A  B) = 1200  [(N(A) + N(B)  N(A  B)] 
= 1200  [(1000 + 400  300] = 100. The requested proportion is 100/1200. 

 
2.2.38  
 
 
 
 
 
  
 N(A  B  C) = N(A) + N(B) + N(C)  N(A  B)  N(A  C)  N(B  C)  + N(A  B  C) 
 
2.2.39 Let A be the set of those saying “yes” to the first question and B be the set of those saying 

“yes” to the second question. We are given that N(A) = 600, N(B) = 400, and  
N(AC  B) = 300. Then N(A  B) = N(B)  ( )CN A B = 400  300 = 100. ( )CN A B   
= N(A)  N(A  B) = 600  100 = 500. 

 
2.2.40 [( ) ]CN A B  = 120  N(A  B) = 120  [N( CA  B) + N(A  CB ) + N(A  B)] 

= 120  [50 + 15 + 2] = 53 
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Section 2.3: The Probability Function 
 
2.3.1 Let L and V denote the sets of programs with offensive language and too much violence, 

respectively.  Then P(L) = 0.42, P(V) = 0.27, and P(L  V) = 0.10.   
Therefore, P(program complies) = P((L  V)C) = 1  [P(L) + P(V)  P(L  V)] = 0.41. 

 
2.3.2 P(A or B but not both) = P(A  B)  P(A  B) = P(A) + P(B)  P (A  B)  P(A  B)  

= 0.4 + 0.5  0.1  0.1 = 0.7 
 
2.3.3 (a) 1  P(A  B) 
 (b) P(B)  P(A  B) 
 
2.3.4 P(A  B) = P(A) + P(B)  P(A  B) = 0.3;  P(A)  P(A  B) = 0.1.  Therefore, P(B) = 0.2. 
 

2.3.5 No.  P(A1  A2  A3) = P(at least one “6” appears) = 1  P(no 6’s appear) = 
35 11

6 2
   
 

.   

 The Ai’s are not mutually exclusive, so P(A1  A2  A3)  P(A1) + P(A2) + P(A3). 
 
2.3.6  
  
 
 
 
 
 
 
 P(A or B but not both) = 0.5 – 0.2 = 0.3 
 
 
2.3.7  
 
 
 
 
 
 
 
 By inspection, B = (B  A1)  (B  A2)  …  (B  An).   
 
 
2.3.8 (a)    (b) (b) 
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2.3.9 P(odd man out) = 1  P(no odd man out) = 1  P(HHH or TTT) = 1  2 3
8 4
  

 
2.3.10 A = {2, 4, 6, …, 24};  B = {3, 6, 9, …, 24);  A  B = {6, 12, 18, 24}. 

 Therefore, P(A  B) = P(A) + P(B)  P(A  B) = 12 8 4 16
24 24 24 24

   . 

 
2.3.11 Let A:  State wins Saturday and B:  State wins next Saturday.  Then P(A) = 0.10, P(B) = 0.30, 

and P(lose both) = 0.65 = 1  P(A  B), which implies that P(A  B) = 0.35.  Therefore,  
P(A  B) = 0.10 + 0.30  0.35 = 0.05, so P(State wins exactly once) = P(A  B)  P(A  B) 
= 0.35  0.05 = 0.30. 

 
2.3.12 Since A1 and A2 are mutually exclusive and cover the entire sample space, p1 + p2 = 1.   

But 3p1  p2 = 1
2

, so p2 = 5
8

. 

 
2.3.13 Let F:  female is hired and T:  minority is hired.  Then P(F) = 0.60, P(T) = 0.30, and  

P(FC  TC) = 0.25 = 1  P(F  T).  Since P(F  T) = 0.75, P(F  T)  
= 0.60 + 0.30  0.75 = 0.15. 

 
2.3.14 The smallest value of P[(A  B C)C] occurs when P(A  B  C) is as large as possible. 

This, in turn, occurs when A, B, and C are mutually disjoint. The largest value for  
P(A  B  C) is P(A) + P(B) + P(C) = 0.2 + 0.1 + 0.3 = 0.6.  Thus, the smallest value for  
P[(A  B  C)C] is 0.4. 

 
2.3.15 (a) XC  Y = {(H, T, T, H), (T, H, H, T)}, so P(XC  Y) = 2/16 
 (b) X  YC = {(H, T, T, T), (T, T, T, H), (T, H, H, H), (H, H, H, T)} so P(X  YC) = 4/16 
 
2.3.16 A = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)} 
 A  BC = {(1, 5), (3, 3), (5, 1)}, so P(A  BC) = 3/36 = 1/12. 
 
2.3.17 A  B, (A  B)  (A  C), A, A  B, S 
 
2.3.18 Let A be the event of getting arrested for the first scam; B, for the second. We are given  

P(A) = 1/10, P(B) = 1/30, and P(A  B) = 0.0025. Her chances of not getting arrested are 
P[(A  B)C] = 1  P(A  B) = 1  [P(A) + P(B)  P(A  B)] = 1  [1/10 + 1/30  0.0025]  
= 0.869 

 
 
Section 2.4: Conditional Probability 
 

2.4.1 P(sum = 10|sum exceeds 8) = (sum 10 and sum exceeds 8)
(sum exceeds 8)

P
P
   

 =  (sum 10) 3 36 3
(sum 9,10,11, or 12) 4 36 3 36 2 36 1 36 10

P /
P / / / /

  
   

. 
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2.4.2 P(A|B) + P(B|A) = 0.75 = ( ) ( ) 10 ( ) 5 ( )
( ) ( ) 4

P A B P A B P A B P A B
P B P A
      , which implies 

that P(A  B) = 0.1. 
 

2.4.3 If P(A|B) = ( ) ( )
( )

P A B P A
P B
  , then P(A  B) < P(A)  P(B).   

It follows that P(B|A) = ( ) ( ) ( )
( ) ( )

P A B P A P B
P A P A
   = P(B). 

 

2.4.4 P(E|A  B) = ( ( )) ( ) ( ) ( ) 0.4 0.1 3
( ) ( ) ( ) 0.4 4

P E A B P E P A B P A B
P A B P A B P A B
        

  
. 

 
2.4.5 The answer would remain the same.  Distinguishing only three family types does not make 

them equally likely; (girl, boy) families will occur twice as often as either (boy, boy) or (girl, 
girl) families. 

 
2.4.6 P(A  B) = 0.8 and P(A  B)  P(A  B) = 0.6, so P(A  B) = 0.2.   

Also, P(A|B) = 0.6 = ( )
( )

P A B
P B
 , so P(B) = 0.2 1

0.6 3
 and P(A) = 0.8 + 0.2  1 2

3 3
 . 

 
2.4.7 Let Ri be the event that a red chip is selected on the ith draw, i = 1, 2.   

Then P(both are red) = P(R1  R2) = P(R2 | R1)P(R1) = 3 1 3
4 2 8
  . 

 

2.4.8 P(A|B) = ( ) ( ) ( ) ( ) ( )
( ) ( )

P A B P A P B P A B a b P A B
P B P B b
        . 

 But P(A  B)  1, so P(A|B)  1a b
b

  . 

 
2.4.9 Let iW  be the event that a white chip is selected on the ith draw, i = 1,2 .   

Then P(W2|W1) = 1 2

1

( )
( )

P W W
P W
 .  If both chips in the urn are white, P(W1) = 1;   

 if one is white and one is black, P(W1) = 1
2

.   

Since each chip distribution is equally likely, P(W1) = 1  1 1 1 3
2 2 2 4
   .   

Similarly, P(W1  W2) = 1  1 1 1 5
2 4 2 8
   , so P(W2|W1) = 5 / 8 5

3 / 4 6
 . 

 

2.4.10 P[(A  B)| (A  B)C] = [( ) ( ) ] ( ) 0
[( ) ] [( ) ]

C

C C

P A B A B P
P A B P A B
    

 
 

 
2.4.11 (a) P(AC  BC) = 1  P(A  B) = 1  [P(A) + P(B)  P(A  B)] =  

1  [0.65 + 0.55  0.25] = 0.05 
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 (b) P[(AC  B)  (A  BC)] = P(AC  B) + P(A  BC) =  
[P(A)  P(A  B)] + [P(B)  P(A  B)] = [0.65  0.25] + [0.55  0.25] = 0.70 

 (c) P(A  B) = 0.95 
 (d) P[(A  B)C] = 1  P(A  B) = 1  0.25 = 0.75 

 (e) P{[(AC  B)  (A  BC)]| A  B} = [( ) ( )]
( )

C CP A B A B
P A B
  


 = 0.70/0.95 = 70/95 

 (f) P(A  B)| A  B) = P(A  B)/P(A  B) = 0.25/0.95 = 25/95 
 (g) P(B|AC) = P(AC  B)/P(AC) ] = [P(B)  P(A  B)]/[1  P(A)] = [0.55  0.25]/[1  0.65]  

= 30/35 
 
2.4.12 P(No. of heads  2| No. of heads  2)  

= P(No. of heads  2 and No. of heads  2)/P(No. of heads  2)  
= P(No. of heads = 2)/P(No. of heads  2) = (3/8)/(7/8) = 3/7 

 
2.4.13 P(first die  4|sum = 8) = P(first die  4 and sum = 8)/P(sum = 8) 

= P({(4, 4), (5, 3), (6, 2)}/P({(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}) = 3/5 
 
2.4.14 There are 4 ways to choose three aces (count which one is left out). There are 48 ways to 

choose the card that is not an ace, so there are 4  48 = 192 sets of cards where exactly three 
are aces. That gives 193 sets where there are at least three aces. The conditional probability is 
(1/270,725)/(193/270,725) = 1/193. 

 
2.4.15 First note that P(A  B) = 1  P[(A  B)C] = 1  0.2 = 0.8. 

Then P(B) = P(A  B)  P(A  BC)  P(A  B) = 0.8  0.3  0.1 = 0.5.  
Finally P(A|B) = P(A B)/P(B) = 0.1/0.5 = 1/5 

 
2.4.16 P(A|B) = 0.5 implies P(A  B) = 0.5P(B). P(B|A) = 0.4 implies P(A  B) = (0.4)P(A). 

Thus, 0.5P(B) = 0.4P(A) or P(B) = 0.8P(A). 
 Then, 0.9 = P(A) + P(B) = P(A) + 0.8P(A) or P(A) = 0.9/1.8 = 0.5. 
 
2.4.17 P[(A  B)C] = P[(A  B)C] + P(A  BC) + P(AC  B) = 0.2 + 0.1 + 0.3 = 0.6 
 P(A  B|(A  B)C) = P[(A  BC)  (AC  B)]/P((A  B)C) = [0.1 + 0.3]/0.6 = 2/3 
 
2.4.18 P(sum  8|at least one die shows 5) 
 = P(sum  8 and at least one die shows 5)/P(at least one die shows 5) 
 = P({(5, 3), (5, 4), (5, 6), (3, 5), (4, 5), (6, 5), (5, 5)})/(11/36) = 7/11 
 
2.4.19 P(Outandout wins|Australian Doll and Dusty Stake don’t win)  
 = P(Outandout wins and Australian Doll and Dusty Stake don’t win)/P(Australian Doll and 

Dusty Stake don’t win) = 0.20/0.55 = 20/55 
 
2.4.20 Suppose the guard will randomly choose to name Bob or Charley if they are the two to go 

free. Then the probability the guard will name Bob, for example, is  
 P(Andy, Bob) + (1/2)P(Bob, Charley) = 1/3 + (1/2)(1/3) = 1/2. 
 The probability Andy will go free given the guard names Bob is P(Andy, Bob)/P(Guard 

names Bob) = (1/3)/(1/2) = 2/3. A similar argument holds for the guard naming Charley. 
Andy’s concern is not justified. 
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2.4.21 P(BBRWW) = P(B)P(B|B)P(R|BB)P(W|BBR)P(W|BBRW) = 3 5 6 5
15 14 13 12 11
      =0.0050 

 P(2, 6, 4, 9, 13) = 1 1 1 1 1 1
15 14 13 12 11 360,360

     . 

 
2.4.22 Let Ki be the event that the ith key tried opens the door, i = 1, 2, …, n.  Then P(door opens 

first time with 3rd key) = 1 2 3 1 2 1 3 1 2( ) ( ) ( ) ( )C C C C C C CP K K K P K P K K P K K K       

= 1 2 1 1
1 2

n n
n n n n
   

 
 . 

 
2.4.23 (a) The complementary event is that the team loses three or four games. Assume the games 

are independent. The probability of the event is  
(0.6)(0.50)(0.6)(0.3) + (0.4)(0.50)(0.6)(0.3) + (0.4)(0.50)(0.4)(0.3) + (0.4)(0.50)(0.6)(0.7) 
+ (0.4)(0.50)(0.6)(0.3) = 0.234.  
The probability of a bowl appearance is 1 – 0.234 = 0.766. 

 (b) Let kA  = probability team wins exactly k games, k = 3,4. 

  Then 4 3 4 4 3 4 4
4 3 4

3 4 3 4 3 4

[ ( )] [( ) ] ( ) ( )( | )
( ) ( ) ( )

P A A A P A A A P P AP A A A
P A A P A A P A A
        

  
  

  But this does not equal 4( )P A . 
 (c) Yes, the two events are independent. 
 
2.4.24 (1/2)(1/2)(1/2)(2/3)(3/4) = 1/16 
 
2.4.25 Let Ai be the event “Bearing came from supplier i”, i = 1, 2, 3. Let B be the event “Bearing in 

toy manufacturer’s inventory is defective.”  
 Then P(A1) = 0.5, P(A2) = 0.3, P(A3 ) = 0.2 and P(B|A1) = 0.02, P(B|A2) = 0.03, P(B|A3) = 0.04 
 Combining these probabilities according to Theorem 2.4.1 gives 
 P(B) = (0.02)(0.5) + (0.03)(0.3) + (0.04)(0.2) = 0.027 
 meaning that the manufacturer can expect 2.7% of her ball-bearing stock to be defective. 
 
2.4.26 Let B be the event that the face (or sum of faces) equals 6.  Let A1 be the event that a Head 

comes up and A2, the event that a Tail comes up.  Then P(B) = P(B|A1)P(A1) + P(B|A2)P(A2)  

= 1 1 5 1
6 2 36 2
    = 0.15. 

 
2.4.27 Let B be the event that the countries go to war.  Let A be the event that terrorism increases.  

Then P(B) = P(B|A)P(A) + P(B|AC)P(AC) = (0.65)(0.30) + (0.05)(0.70) = 0.23. 
 
2.4.28 Let B be the event that a donation is received; let A1, A2, and A3 denote the events that the call 

is placed to Belle Meade, Oak Hill, and Antioch, respectively.   

 Then P(B) = 
3

1

1000 1000 2000( ) ( ) (0.60) (0.55) (0.35) 0.46
4000 4000 4000i i

i
P B A P A



       . 

 
2.4.29 Let B denote the event that the person interviewed answers truthfully, and let A be the event 

that the person interviewed is a man.   
 Then P(B) = P(B|A)P(A) + P(B|AC)P(AC) = (0.78)(0.47) + (0.63)(0.53) = 0.70. 
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2.4.30 Let B be the event that a red chip is ultimately drawn from Urn I.  Let ARW, for example, 
denote the event that a red is transferred from Urn I and a white is transferred from Urn II.   

 Then P(B) = P(B|ARR)P(ARR)  + P(B|ARW)P(ARW) + P(B|AWR)P(AWR) + P(B|AWW)P(AWW)  

= 3 3 2 2 3 2 1 2 3 1 2 111
4 4 4 4 4 4 4 4 4 4 4 16
                     
       

. 

 
2.4.31 Let B denote the event that someone will test positive, and let A denote the event that 

someone is infected.  Then  
P(B) = P(B|A)P(A) + P(B|AC)P(AC) = (0.999)(0.0001) + (0.0001)(0.9999) = 0.00019989. 

 
2.4.32 The optimal allocation has 1 white chip in one urn and the other 19 chips (9 white and 10 

black) in the other urn.  Then P(white is drawn) = 1  1 9 1
2 19 2
   = 0.74. 

 
2.4.33 Let iD  be the probability that Democrat i wins the primary, i = 1, 2, 3.  

P(R wins) = P(R |D1)P(D1 ) + P(R |D2)P(D2 ) + P(R |D3)P(D3 )  
= (0.40)(0.35) + (0.35)(0.40) + (0.60)(0.25) = 0.43 

 
2.4.34 Since the identities of the six chips drawn are not known, their selection does not affect any 

probability associated with the seventh chip.  Therefore,  

 P(seventh chip drawn is red) = P(first chip drawn is red) = 40
100

. 

 
2.4.35 No.  Let B denote the event that the person calling the toss is correct.  Let AH be the event that 

the coin comes up Heads and let AT be the event that the coin comes up Tails.   

 Then P(B) = P(B|AH)P(AH) + P(B|AT)P(AT) = (0.7) 1
2

 
 
 

 + (0.3) 1
2

 
 
 

 = 1
2

. 

 
2.4.36 Let B be the event of a guilty verdict; let A be the event that the defense can discredit the 

police. Then P(B) = P(B|A)P(A) + P(B|AC)P(AC) = 0.15(0.70) + 0.80(0.30) = 0.345 
 
2.4.37 Let A1 be the event of a 3.5-4.0 GPA; A2, of a 3.0-3.5 GPA; and A3, of a GPA less than 3.0. If 

B is the event of getting into medical school, then  
P(B) = P(B|A1)P(A1) + P(B|A2)P(A2) + P(B|A3)P(A3) = (0.8)(0.25) + (0.5)(0.35) + (0.1)(0.40)  
= 0.415 

 
2.4.38 Let B be the event of early release; let A be the event that the prisoner is related to someone 

on the governor’s staff.  
 Then P (B) = P(B|A)P(A) + P(B|AC)P(AC) = (0.90)(0.40) + (0.01)(0.60)  = 0.366 
 
2.4.39 Let A1 be the event of being a Humanities major; A2, of being a Natural Science major; A3, of 

being a History major; and A4, of being a Social Science major. If B is the event of a male 
student, then P(B) = P(B|A1)P(A1) + P(B|A2)P(A2) + P(B|A3)P(A3) + P(B|A4)P(A4) 
= (0.40)(0.4) + (0.85)(0.1) + (0.55)(0.3) + (0.25)(0.2) = 0.46 

 
2.4.40 Let B denote the event that the chip drawn from Urn II is red; let AR and AW denote the events 

that the chips transferred are red and white, respectively.   
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 Then ( | ) ( ) (2 / 4)(2 / 3) 4( | )
( | ) ( ) ( | ) ( ) (3 / 4)(1 / 3) (2 / 4)(2 / 3) 7

W W
W

R R W W

P B A P AP A B
P B A P A P B A P A

  
 

 

 
2.4.41 Let Ai be the event that Urn i is chosen, i = I, II, III. Then, P(Ai) = 1/3, i = I, II, III. Suppose B 

is the event a red chip is drawn. Note that P(B|A1) = 3/8, P(B|A2) = 1/2 and P(B|A3) = 5/8. 

 3 3
3

1 1 2 2 3 3

( | ) ( )( | ) = 
( | ) ( ) ( | ) ( ) ( | ) ( )

P B A P AP A B
P B A P A P B A P A P B A P A 

 

 = (5 / 8)(1 / 3)
(3 / 8)(1 / 3) (1 / 2)(1 / 3) (5 / 8)(1 / 3) 

 = 5/12. 

 
2.4.42 If B is the event that the warning light flashes and A is the event that the oil pressure is low, 

then 

 P(A|B) = ( | ) ( )
( | ) ( ) ( | ) ( )C C

P B A P A
P B A P A P B A P A

= (0.99)(0.10)
(0.99)(0.10) (0.02)(0.90)

 = 0.85 

 
2.4.43 Let B be the event that the basement leaks, and let AT, AW, and AH denote the events that the 

house was built by Tara, Westview, and Hearthstone, respectively.  Then P(B|AT) = 0.60, 
P(B|AW) = 0.50, and P(B|AH) = 0.40.  Also, P(AT) = 2/11, P(AW) = 3/11, and P(AH) = 6/11.  
Applying Bayes’ rule to each of the builders shows that P(AT|B) = 0.24, P(AW|B) = 0.29, and 
P(AH|B) = 0.47, implying that Hearthstone is the most likely contractor. 

 
2.4.44 Let B denote the event that Francesca passed, and let AX and AY denote the events that she was 

enrolled in Professor X’s section and Professor Y’s section, respectively.   
Since P(B|AX) = 0.85, P(B|AY) = 0.60, P(AX) = 0.4, and P(AY) = 0.6,  

P(AX|B) = (0.85)(0.4)
(0.85)(0.4) (0.60)(0.6)

 = 0.486 

 
2.4.45 Let B denote the event that a check bounces, and let A be the event that a customer wears 

sunglasses.  Then P(B|A) = 0.50, P(B|AC) = 1  0.98 = 0.02, and P(A) = 0.10, so  

 P(A|B) = (0.50)(0.10)
(0.50)(0.10) (0.02)(0.90)

 = 0.74 

 
2.4.46 Let B be the event that Basil dies, and define A1, A2, and A3 to be the events that he ordered 

cherries flambe, chocolate mousse, or no dessert, respectively.  Then P(B|A1) = 0.60, P(B|A2) 
= 0.90, P(B|A3) = 0, P(A1) = 0.50, P(A2) = 0.40, and P(A3) = 0.10.  Comparing P(A1|B) and 
P(A2|B) suggests that Margo should be considered the prime suspect: 

 P(A1|B) = (0.60)(0.50)
(0.60)(0.50) (0.90)(0.40) (0)(0.10) 

 = 0.45 

 P(A2|B) = (0.90)(0.40)
(0.60)(0.50) (0.90)(0.40) (0)(0.10) 

 = 0.55 

 
2.4.47 Define B to be the event that Josh answers a randomly selected question correctly, and let A1 

and A2 denote the events that he was 1) unprepared for the question and 2) prepared for the 
question, respectively.  Then P(B|A1) = 0.20, P(B|A2) = 1, P(A2) = p, P(A1) = 1  p, and  

 P(A2|B) = 0.92 = 2 2

1 1 2 2

( | ) ( ) 1
( | ) ( ) ( | ) ( ) (0.20)(1 ) (1 )

P B A P A p
P B A P A P B A P A p p


   
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 which implies that p = 0.70  (meaning that Josh was prepared for (0.70)(20) = 14 of the 
questions). 

 
2.4.48 Let B denote the event that the program diagnoses the child as abused, and let A be the event 

that the child is abused.  Then P(A) = 1/90, P(B|A) = 0.90, and P(B|AC) = 0.03, so  

 P(A|B) = (0.90)(1 / 90)
(0.90)(1 / 90) (0.03)(89 / 90)

= 0.25 

 If P(A) = 1/1000, P(A|B) = 0.029; if P(A) = 1/50, P(A|B) = 0.38. 
 
2.4.49 Let A1 be the event of being a Humanities major; A2, of being a History and Culture major; 

and A3, of being a Science major. If B is the event of being a woman, then 

 P(A2|B) = (0.45)(0.5)
(0.75)(0.3) (0.45)(0.5) (0.30)(0.2) 

 = 225/510 

 
2.4.50 Let B be the event that a 1 is received. Let A be the event that a 1 was sent. Then 

 P(AC|B) = (0.10)(0.3)
(0.95)(0.7) (0.10)(0.3)

 = 30/695 

 
2.4.51 Let B be the event that Zach’s girlfriend responds promptly. Let A be the event that Zach sent 

an e-mail, so AC is the event of leaving a message. Then 

 P(A|B) = (0.8)(2 / 3)
(0.8)(2 / 3) (0.9)(1 / 3)

 = 16/25 

 
2.4.52 Let A be the event that the shipment came from Warehouse A with events B and C defined 

similarly. Let D be the event of a complaint. 

 P(C|D) = ( | ) ( )
( | ) ( ) ( | ) ( ) ( | ) ( )

P D C P C
P D A P A P D B P B P D C P C 

 

  = (0.02)(0.5)
(0.03)(0.3) (0.05)(0.2) (0.02)(0.5) 

 = 10/29 

 
2.4.53 Let Ai be the event that Drawer i is chosen, i, = 1, 2, 3. If B is the event a silver coin is 

selected, then P(A3|B) = (0.5)(1 / 3)
(0)(1 / 3) (1)(1 / 3) (0.5)(1 / 3) 

 = 1/3 

 
2.4.54 Use for comparison the following quantities: 
 Young: 20(0.35)  = 7; Middle-aged: 50(0.15) = 7.5; Elderly 30(0.25) = 7.5. Thus, it is equally 

likely that the person is either middle-aged or elderly. 
 
 
Section 2.5: Independence 
 
2.5.1 (a) No, because P(A  B) > 0. 
 (b) No, because P(A  B) = 0.2  P(A)  P(B) = (0.6)(0.5) = 0.3 
 (c) P(AC  BC) = P((A  B)C) = 1  P(A  B) = 1  0.2 = 0.8. 
 
2.5.2 Let C and M be the events that Spike passes chemistry and mathematics, respectively.  Since  
 P(C  M) = 0.12  P(C)  P(M) = (0.35)(0.40) = 0.14, C and M are not independent.   
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 P(Spike fails both) = 1  P(Spike passes at least one) = 1  P(C  M)  
= 1  [P(C) + P(M)  P(C  M)] = 0.37. 

2.5.3 P(one face is twice the other face) = P((1, 2), (2, 1), (2, 4), (4, 2), (3, 6), (6, 3)) = 6
36

. 

 
2.5.4 Consider the probability of the complementary event that they have the same blood types:  

2 2 2 20.4 0.01 0.05 0.45 0.375    .  
 Then the probability they have different blood types is 1 – 0.375 = 0.625.   
 
2.5.5 P(Dana wins at least 1 game out of 2) = 0.3, which implies that P(Dana loses 2 games out of 

2) = 0.7.  Therefore, P(Dana wins at least 1 game out of 4) = 1  P(Dana loses all 4 games)  
= 1  P(Dana loses first 2 games and Dana loses second 2 games) = 1  (0.7)(0.7) = 0.51. 

 
2.5.6 Six equally-likely orderings are possible for any set of three distinct random numbers:   
 x1 < x2 < x3,  x1 < x3 < x2,  x2 < x1 < x3,  x2 < x3 < x1,  x3 < x1 < x2,  and x3 < x2 < x1.  By 

inspection, P(A) = 2
6

, and P(B) = 1
6

, so P(A  B) = P(A)  P(B) = 1
18

. 

 
2.5.7 (a) 1.  P(A  B) = P(A) + P(B)  P(A  B) = 1/4 + 1/8 + 0 = 3/8 
  2.  P(A  B) = P(A) + P(B)  P(A)P(B) = 1/4 + 1/8  (1/4)(1/8) = 11/32 

 (b) 1.  P(A|B) = ( ) 0 0
( ) ( )

P A B
P B P B
     

  2.  P(A|B) = ( ) ( ) ( ) ( ) 1 / 4
( ) ( )

P A B P A P B P A
P B P B
     

 
2.5.8 (a) P(A  B  C) = P(A) + P(B) + P(C)  P(A)P(B)  P(A)P(C)  P(B)P(C) + 

P(A)P(B)P(C) 
 (b) P(A  B  C) = 1  P[(A  B  C)C] = 1  P(AC  BC  CC) = 1  P(AC)P(BC)P(CC) 
 
2.5.9 Let Ai be the event of i heads in the first two tosses, i = 0, 1, 2. Let Bi be the event of i heads 

in the last two tosses, i = 0, 1, 2. The A’s and B’s are independent. The event of interest is  
(A0  B0)  (A1  B1)  (A2  B2)  and P[(A0  B0)  (A1  B1)  (A2  B2)]  
= P(A0)P(B0) + P(A1)P(B1) + P(A2)P(B2) = (1/4)(1/4) + (1/2)(1/2) + (1/4)(1/4) = 6/16 

 
2.5.10 A and B are disjoint, so they cannot be independent. 
 
2.5.11 Equation 2.5.3: P(A  B  C) = P({1, 3)}) = 1/36 = (2/6)(3/6)(6/36) = P(A)P(B)P(C) 
 Equation 2.5.4: P(B  C) = P({1, 3), (5,6)}) = 2/36  (3/6)(6/36) = P(B)P(C) 
 
2.5.12 Equation 2.5 3: P(A  B  C) = P({2, 4, 10, 12)}) = 4/36  (1/2)(1/2)(1/2) = P(A)P(B)P(C) 
 Equation 2.5.4: P(A  B) = P({2, 4, 10, 12, 24, 26, 32, 34, 36)}) = 9/36 = 1/4 = (1/2)(1/2)  

= P(A)P(B) 
 P(A  C) = P({1, 2, 3,  4, 5, 10, 11, 12, 13)}) = 9/36 = 1/4 = (1/2)(1/2) = P(A)P(C) 
 P(B  C) = P({2, 4, 6, 8, 10, 12, 14, 16, 18)}) = 9/36 = 1/4 = (1/2)(1/2) = P(A)P(C) 
 
2.5.13 11 [= 6 verifications of the form P(Ai  Aj) = P(Ai)  P(Aj)  +  4 verifications of the form  
 P(Ai  Aj  Ak) = P(Ai)  P(Aj)  P(Ak)  +  1 verification  that P(A1  A2  A3  A4)  

= P(A1)   P(A2)  P(A3)  P(A4)]. 
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2.5.14 P(A) = 3
6

, P(B) = 2
6

, P(C) = 6
36

, P(A  B) = 6
36

, P(A  C) = 3
36

, P(B  C) = 2
36

, and  

P(A  B  C) = 1
36

.  It follows that A, B, and C are mutually independent because  

P(A  B  C) = 1
36

 = P(A)  P(B)  P(C) =  3 2 6
6 6 36
  , P(A  B) = 6

36
 = P(A)  P(B) = 3 2

6 6
 , 

P(A  C) = 3
36

 = P(A)  P(C) = 3 6
6 36
 , and P(B  C) = 2

36
 = P(B)  P(C) = 2 6

6 36
 . 

 
2.5.15 P(A  B  C) = 0  (since the sum of two odd numbers is necessarily even)  P(A)  P(B)  

P(C) > 0, so A, B, and C are not mutually independent.  However, P(A  B) = 9
36

  

= P(A)  P(B) = 3 3
6 6
 , P(A  C) = 9

36
 = P(A)  P(C) = 3 18

6 36
 , and P(B  C) = 9

36
 = P(B)  

P(C) = 3 18
6 36
 , so A, B, and C are pairwise independent. 

 
2.5.16 Let Ri and Gi be the events that the ith light is red and green, respectively, i = 1, 2, 3, 4.  Then 

P(R1) = P(R2) = 1
3

 and P(R3) = P(R4) = 1
2

.  Because of the considerable distance between the 

intersections, what happens from light to light can be considered independent events.  
P(driver stops at least 3 times) = P(driver stops exactly 3 times) + P(driver stops all 4 times)  
= P((R1  R2  R3  G4)  (R1  R2  G3  R4)  (R1  G2  R3  R4)  

 (G1  R2  R3  R4)  (R1  R2  R3  R4)) = 1 1 1 1 1 1 1 1
3 3 2 2 3 3 2 2

                  
         

 

+ 1 2 1 1 2 1 1 1 1 1 1 1 7
3 3 2 2 3 3 2 2 3 3 2 2 36

                              
              

. 

 
2.5.17 Let M, L, and G be the events that a student passes the mathematics, language, and general 

knowledge tests, respectively.  Then P(M) = 6175
9500

, P(L) = 7600
9500

, and P(G) = 8075
9500

. 

 P(student fails to qualify) = P(student fails at least one exam)  
= 1  P(student passes all three exams) = 1  P(M  L  G) = 1  P(M)  P(L)  P(G) = 0.56. 

 
2.5.18 Let Ai denote the event that switch Ai closes, i = 1, 2, 3, 4.  Since the Ai’s are independent 

events, P(circuit is completed) =  
P((A1  A2)  (A3  A4)) = P(A1  A2) + P(A3  A4)  P((A1  A2)  (A3  A4)) = 2p2  p4. 

 
2.5.19 Let p be the probability of having a winning game card.  
 Then 0.32 = P(winning at least once in 5 tries) = 1  P(not winning in 5 tries) = 1  (1  p)5, 

so p = 0.074 
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2.5.20 Let AH, AT, BH, BT, CH, and CT denote the events that players A, B, and C throw heads and tails 
on individual tosses.  Then P(A throws first head) = P(AH  (AT  BT  CT  AH)  )  

 = 
21 1 1 1 1 1 1 4

2 2 8 2 8 2 1 1/ 8 7
                  

 .   

Similarly, P(B throws first head) = P((AT  BH)  (AT  BT  CT  AT  BH)  …)  

= 
21 1 1 1 1 1 1 2...

4 4 8 4 8 4 1 1/ 8 7
                  

.   

 P(C throws first head) = 1  4 2 1
7 7 7
  . 

 
2.5.21 P(at least one child becomes adult) = 1  P(no child becomes adult) = 1 0.8n . 

 Then 1 0.8 0.75n   implies ln 0.25
ln 0.8

n    or n  ≥  6.2 , so take n = 7. 

 
2.5.22 P(at least one viewer can name actor) = 1  P(no viewer can name actor) = 1  (0.85)10  

= 0.80. 
 
2.5.23 Let B be the event that no heads appear, and let Ai be the event that i coins are tossed,  

i = 1, 2, …, 6.  Then P(B) = 
2 66

1

1 1 1 1 1 1 63( | ) ( ) ...
2 6 2 6 2 6 384i i

i
P B A P A



                      
         

 . 

 
2.5.24 P(at least one red chip is drawn from at least one urn) = 1  P(all chips drawn are white)  

 = 1  4 4 4 41
7 7 7 7

r r r rm
                
       

 . 

2.5.25 P(at least one double six in n throws) = 1  P(no double sixes in n throws) = 1  35
36

n
 
 
 

.  By 

trial and error, the smallest n for which P(at least one double six in n throws) exceeds 0.50 is 

25 
2435[1

36
   
 

= 0.49;  1  
2535

36
 
 
 

 = 0.51]. 

 
2.5.26 Let A be the event that a sum of 8 appears before a sum of 7.  Let B be the event that a sum of 

8 appears on a given roll and let C be the event that the sum appearing on a given roll is 

neither 7 nor 8.  Then P(B) = 5
36

, P(C) = 25
36

, and P(A) = P(B) + P(C)P(B) + P(C)P(C)P(B)  

+  = 
25 25 5 25 5 5

36 36 36 36 36 36
     
 


0

25 5 1 5
36 36 1 25 / 36 11

k

k





          
 . 

 
2.5.27 Let W, B, and R denote the events of getting a white, black and red chip, respectively, on a 

given draw.  Then P(white appears before red) = P(W  (B  W)  (B  B  W)  ) 

= 
2w b w b w

w b r w b r w b r w b r w b r
                

   

= 1
1 / ( )

w w
w b r b w b r w r

 
        

. 
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2.5.28 P(B|A1) = 1  P(all m I-teams fail) = 1  (1  r)m; similarly, P(B|A2) = 1  (1  r)nm.  From 

Theorem 2.4.1, P(B) = [1  (1  r)m]p + [1  (1  r)nm](1  p).  Treating m as a continuous 
variable and differentiating P(B) gives 

( )dP B
dm

 = p(1  r)mln(1  r) + (1  p)(1  r)nm ln(1  r).  Setting ( )dP B
dm

 = 0 implies that  

m = ln[(1 ) / ]
2 2ln(1 )
n p p

r



. 

 
2.5.29 P(at least one four) = 1  P(no fours) = 1  (0.9)n.  1  (0.9)n  0.7 implies n = 12 
 
2.5.30 Let B be the event that all n tosses come up heads. Let 1A  be the event that the coin has two 

heads, and let 2A be the event the coin is fair. Then  

 2
(1 / 2) (8 / 9) 8(1 / 2)( | )

1(1 / 9) (1 / 2) (8 / 9) 1 8(1 / 2)

n n

n nP A B  
 

 

 By inspection, the limit of 2( | )P A B as n goes to infinity is 0. 
 
2.5.31 Assume the events that Stanley answers correctly from question to question are independent. 

(Is this a reasonable assumption?) The probability of answering at least one question on Final 
A is (0.45)(0.55) + (0.55)(0.45) + (0.45)(0.45) = 0.6975 

 The probability of answering at least one question on Final B is (0.30)(0.70)(0.70) + 
((0.70)(0.30)(0.70) +(0.30)(0.30)(0.70) + (0.30)(0.30)(0.70) + (0.30)(0.70)(0.30) + 
(0.70)(0.30)(0.30) + (0.30)(0.30)(0.30)  = 0.657 

 A simpler way to answer the question is to take the complement of the event that he answers 
none correctly. For Final A this is 21 (0.55)  = 0.6975.  
For Final B this is 31 (0.70)  = 0.657. 

 With either method of solution, Stanley will be a bit better off taking Final A. 
 
2.5.32 Take the complementary event that none of n switches opens. This probability is 0.4n . Then 

0.04 0.02n   implies nln(0.04) ≤ ln(0.02) or n ≥ ln(0.02)/ln(0.04) = 4.27. 
 So the smallest n is 5. 
 
 
Section 2.6: Combinatorics 
 
2.6.1 2  3  2  2 = 24 
 
2.6.2 20  9  6  20 = 21,600 
 
2.6.3 3  3  5 = 45.  Included will be aeu and cdx. 
 
2.6.4 (a) 262  104 = 6,760,000 
 (b) 262  10  9  9  8  7 = 3,407,040 
 (c) The total number of plates with four zeros is 26  26, so the total number not having four  

zeros must be 262  104  262 = 6,759,324. 
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2.6.5 There are 9 choices for the first digit (1 through 9), 9 choices for the second digit (0 + 
whichever eight digits are not appearing in the hundreds place), and 8 choices for the last 
digit.  The number of admissible integers, then, is 9  9  8 = 648.  For the integer to be odd, 
the last digit must be either 1, 3, 5, 7, or 9.  That leaves 8 choices for the first digit and 8 
choices for the second digit, making a total of 320 (= 8  8  5) odd integers. 

 
2.6.6 For each topping, the customer has 2 choices:  “add” or “do not add.”  The eight available 

toppings, then, can produce a total of 28 = 256 different hamburgers. 
 
2.6.7 The bases can be occupied in any of 27 ways (each of the seven can be either “empty” or 

“occupied”).  Moreover, the batter can come to the plate facing any of five possible “out” 
situations (0 through 4).  It follows that the number of base-out configurations is 5  27, or 640. 

 
2.6.8  (a) There are 3 choices for the leading digit—7, 8,9, There are 10 choices for each of the 

remaining eight places, for a total of 83 10   However, this count includes 7,000,000,000, 
so the answer is 83 10 1  . 

 (b) Suppose the sequence starts with an even number. Counting 0 as even, there are 5 choices 
for each of the five even places and five choices for the four odd places, giving a total of  

95 .  But the same number occurs if the sequence starts with an odd number, so the 
answer is 92 5   

 (c) There are 5! choices for the first five digits. Then there are 6 choices for where the 2’s go, 
so the answer is 5! 6 . 

 
2.6.9 4  14  6 + 4  6  5 + 14  6  5 + 4  14  5 = 1156 
 
2.6.10 There are two mutually exclusive sets of ways for the black and white keys to alternate—the 

black keys can be 1st, 3rd, 5th, and 7th notes in the melody, or the 2nd, 4th 6th, and 8th. Since 
there are 5 black keys and 7 white keys, there are 5 7 5 7 5 7 5 7        variations in the first 
set and 7 5 7 5 7 5 7 5        in the second set. The total number of alternating melodies is the 
sum 4 4 4 45 7 7 5  = 3,001,250. 

 
2.6.11 The number of usable garage codes is 28  1 = 255, because the “combination” where none of 

the buttons is pushed is inadmissible (recall Example 2.6.3).  Five additional families can be 
added before the eight-button system becomes inadequate. 

 
2.6.12 4, because 21 + 22 + 23 < 26 but 21 + 22 + 23 + 24  26.  
 
2.6.13 In order to exceed 256, the binary sequence of coins must have a head in the ninth position 

and at least one head somewhere in the first eight tosses.  The number of sequences satisfying 
those conditions is 28  1, or 255.  (The “1” corresponds to the sequences TTTTTTTTH, 
whose value would not exceed 256.) 

 
2.6.14 There are 3 choices for the vowel and 4 choices for the consonant, so there are 3  4 = 12 

choices, if order doesn’t matter. If we are taking ordered arrangements, then there are 24 
ways, since each unordered selection can be written vowel first or consonant first. 

 
2.6.15 There are 1  3 ways if the ace of clubs is the first card and 12  4 ways if it is not. The total is 

then 3 + 12  4 = 51 
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2.6.16 Monica has 3  5  2 = 30 routes from Nashville to Anchorage, so there are 30  30 = 900 
choices of round trips. 

 
2.6.17 6P3 = 6  5  4 = 120 
 
2.6.18 4P4 = 4! = 24;  2P2  2P2 = 4 
 

2.6.19 log10(30!)   log10   12 30
2

    
 

log10(30)  30log10e = 32.42246, which implies that  

 30!  1032.42246 = 2.645  1032. 
 
2.6.20 9P9 = 9! = 362,880 
 
2.6.21 There are 2 choices for the first digit, 6 choices for the middle digit, and 5 choices for the last 

digit, so the number of admissible integers that can be formed from the digits 1 through 7 is 
60 (= 2  6  5). 

 
2.6.22 (a) 8P8 = 8! = 40,320 
 (b) The men can be arranged in, say, the odd-numbered chairs in 4P4 ways; for each of those 

permutations, the women can be seated in the even-numbered chairs in 4P4 ways.  But the 
men could also be in the even-numbered chairs.  It follows that the total number of 
alternating seating arrangements is 4P4  4P4 +  4P4  4P4 = 1152. 

 
2.6.23 There are 4 different sets of three semesters in which the electives could be taken.  For each 

of those sets, the electives can be selected and arranged in 10P3 ways, which means that the 
number of possible schedules is 4  10P3, or 2880. 

 
2.6.24 6P6 = 720; 6P6  6P6 = 518,400;  6!6!26 is the number of ways six male/female cheerleading 

teams can be positioned along a sideline if each team has the option of putting the male in 
front or the female in front;  6!6!26212 is the number of arrangements subject to the conditions 
of the previous answer but with the additional option that each cheerleader can face either 
forwards or backwards. 

 
2.6.25 The number of playing sequences where at least one side is out of order = total number of 

playing sequences  number of correct playing sequences = 6P6  1 = 719. 
 
2.6.26 (a) Each of the 4 men can be lined up in 4P4 = 4! = 24 ways; similarly for the women. The 

answer is 224 576 . 
 (b) 7P7 = 7! = 5040 
 
2.6.27 There are 2P2 = 2 ways for you and a friend to be arranged, 8P8 ways for the other eight to be 

permuted, and six ways for you and a friend to be in consecutive positions in line.  By the 
multiplication rule, the number of admissible arrangements is 2P2  8P8  6 = 483,840. 

 
2.6.28 By inspection, nP1 = n.  Assume that nPk = n(n  1)  (n  k + 1) is the number of ways to 

arrange k distinct objects without repetition.  Notice that n  k options would be available for 
a (k + 1)st object added to the sequences.  By the multiplication rule, the number of sequences 
of length k + 1 must be n(n  1)  (n  k + 1)(n  k).  But the latter is the formula for nPk+1. 
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2.6.29 (13!)4 
 
2.6.30 By definition, (n + 1)! = (n + 1)  n!;  let n = 0. 
 
2.6.31 9 2 4 1 P C  = 288 
 
2.6.32 Two people between them: 4  2  5! = 960 
 Three people between them: 3  2  5! = 720 
 Four people between them: 2  2  5! = 480 
 Five people between them: 1  2  5! = 240 
 Total number of ways: 2400 
 
2.6.33 (a) (4!)(5!) = 2800 
 (b) 6(4!)(5!) = 17, 280 
 (c) (4!)(5!) = 2880 

 (d) 
9
4
 
 
 

 (2)(5!) = 30, 240 

 

2.6.34 TENNESSEE can be permuted in 9!
4!2!2!1!

= 3780 ways;  

 FLORIDA can be permuted in 7! = 5040 ways. 
 

2.6.35 If the first digit is a 4, the remaining six digits can be arranged in 3
!

3!(1!)
  = 120 ways; if the 

first digit is a 5, the remaining six digits can be arranged in 2
!

2!2!(1!)
  = 180 ways.  The total 

number of admissible numbers, then, is 120 + 180 = 300. 
 
2.6.36 (a) 8!/3!3!2! = 560 
 (b) 8! = 40,320 
 (c) 8!/3!(1!)5 = 6720 
 
2.6.37 (a) 4!  3!  3! = 864 
 (b) 3!  4!3!3! = 5184 (each of the 3! permutations of the three nationalities can generate 

4!3!3! arrangements of the ten people in line) 
 (c) 10! = 3,628,800 
 (d) 10!/4!3!3! = 4200 
 

2.6.38 Altogether, the letters in S L U M G U L L I O N can be permuted in 6
11!

3!2!(1!)
 ways.  The 

seven consonants can be arranged in 7!/3!(1!)4 ways, of which 4! have the property that the 
three L’s come first.  By the reasoning used in Example 2.6.13, it follows that the number of 

admissible arrangements is 4!/(7!/3!)  11!
3!2!

, or 95,040. 

 
2.6.39 Imagine a field of 4 entrants (A, B, C, D) assigned to positions 1 through 4, where positions 1 

and 2 correspond to the opponents for game 1 and positions 3 and 4 correspond to the 
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opponents for game 2.  Although the four players can be assigned to the four positions in 4! 

ways, not all of those permutations yield different tournaments.  For example, 
1 2 3 4
B C A D  and 

1 2 3 4
A D B C  produce the same set of games, as do 

1 2 3 4
B C A D  and 

1 2 3 4
C B A D .  In general, n 

games can be arranged in n! ways, and the two players in each game can be permuted in 2! 
ways.  Given a field of 2n entrants, then, the number of distinct pairings is (2n)!/n!(2!)n, or 1  
3  5  (2n  1). 

 
2.6.40 Since x12 can be the result of the factors x6  x6  1  1 or x3  x3  x3  x3  1  1 or  
 x6  x3  x3  1  1, the analysis described in Example 2.6.16 implies that the coefficient of x12 

is 18! 18! 18!
2!16! 4!14! 1!2!15!

   = 5661. 

 
2.6.41 The letters in E L E E M O S Y N A R Y minus the pair S Y can be permuted in 10!/3! ways. 

Since S Y can be positioned in front of, within, or behind those ten letters in 11 ways, the 
number of admissible arrangements is 11  10!/3! = 6,652,800. 

 
2.6.42 Each admissible spelling of ABRACADABRA can be viewed as a path consisting of 10 

steps, five to the right (R) and five to the left (L). Thus, each spelling corresponds to a 

permutation of the five  R’s and five L’s. There are 10!
5!5!

 = 252 such permutations. 

 
2.6.43 Six, because the first four pitches must include two balls and two strikes, which can occur in 

4!/2!2! = 6 ways. 
 
2.6.44 9!/2!3!1!3! = 5040  (recall Example 2.6.16) 
 
2.6.45 Think of the six points being numbered 1 through 6.  Any permutation of three A’s and three 

B’s—for example, 
1 2 3 4 5 6
A A B B A B —corresponds to the three vertices chosen for triangle A 

and the three for triangle B.  It follows that 6!/3!3! = 20 different sets of two triangles can be 
drawn. 

 
2.6.46 Consider k! objects categorized into (k  1)! groups, each group being of size k.  By Theorem 

2.6.2, the number of ways to arrange the k! objects is (k!)!/(k!)(k  1)!, but the latter must be an 
integer. 

 

2.6.47 There are 14!
2!2!1!2!2!3!1!1!

 total permutations of the letters. There are 5!
2!2!1!

 = 30 

arrangements of the vowels, only one of which leaves the vowels in their original position. 

Thus, there are 1 14!
30 2!2!1!2!1!3!1!1!

  = 30,270,240 arrangements of the word leaving the 

vowels in their original position. 
 

2.6.48 15!
4!3!1!3!1!1!1!1!

 = 1, 513, 512, 000 
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2.6.49 The three courses with A grades can be: 
 emf, emp, emh, efp, efh, eph, mfp, mfh, mph, fph, or 10 possibilities. From the point of view 

of Theorem 2.6.2, the grade assignments correspond to the set of permutations of three A’s 

and two B’s, which equals 5!
3!2!

 = 10. 

 
2.6.50 Since every (unordered) set of two letters describes a different line, the number of possible 

lines is 
5
2
 
 
 

 = 10. 

 
2.6.51 To achieve the two-to-one ratio, six pledges need to be chosen from the set of 10 and three 

from the set of 15, so the number of admissible classes is 
10 15
6 3

   
   

   
 = 95,550. 

 
2.6.52 Of the eight crew members, five need to be on a given side of the boat.  Clearly, the 

remaining three can be assigned to the sides in 3 ways.  Moreover, the rowers on each side 
can be permuted in 4! ways.  By the multiplication rule, then, the number of ways to arrange 
the crew is  

 1728 (= 3  4!  4!). 
 

2.6.53 (a) 
9
4
 
 
 

 = 126 

 (b) 
5 4
2 2
  
  
  

 = 60 

 (c) 
9 5 4
4 4 4
     

      
     

 = 120 

 

2.6.54 
7
5
 
 
 

 = 21; order does not matter. 

 
2.6.55 Consider a simpler problem:  Two teams of two each are to be chosen from a set of four 

players—A, B, C, and D.  Although a single team can be chosen in 
4
2
 
 
 

 ways, the number of 

pairs of teams is only 
4

2
2
 
 
 

, because [( A B), (C D)] and [(C D), (A B)] would correspond 

to the same matchup.  Applying that reasoning here means that the ten players can split up in 
10

2
5

 
 
 

 = 126 ways.   

 
2.6.56 Number the spaces between the twenty pages from 1 to 19. Choosing any two of these spaces 

partitions the reading assignment into three non-zero, numbers, 1 2 3, , andx x x , 
corresponding to the numbers of pages read on Monday, Tuesday, and Wednesday, 
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respectively. Therefore, the number of ways to complete the reading assignment is  
19
2

 
 
 

 = 171. 

 

2.6.57 The four I’s need to occupy any of the 
8
4
 
 
 

 sets of four spaces between and around the other 

seven letters.  Since the latter can be permuted in 7!
2!4!1!

 ways, the total number of 

admissible arrangements is 
8 7!
4 2!4!1!
 

 
 

 = 7350. 

 

2.6.58 
1 ( 1)! ! ( 1)! !

1 !( 1 )! ( 1)!( 1)! !( 1 )! !( 1)!
n n n n n n k

k k k n k k n k k n k k n k
                        

 

( 1)! ! !
!( 1 )! !( )!
n n k n

k n k k n k
  
  

 

 

2.6.59 ! !( )!/
1 ( 1)!( 1)! ! 1

n n n k n k n k
k k k n k n k
                 

, so the recursion is  

 
1 1

n nn k
k kk
           

 

 

2.6.60 Consider the binomial expansion 
0

( 1)
n

n k

k

n
x x

k

 
   

 
 as a function of x. Differentiate twice to 

obtain 2 2

2
( 1)( 1) ( 1)

n
n k

k

n
n n x k k x

k
 



 
     

 
 . Setting x = 1 gives 

2

2
( 1)2 ( 1)

n
n

k

n
n n k k

k




 
    

 
  

 

2.6.61 The ratio of two successive terms in the sequence is 
1 1

n n n j
j j j

           
.  For small j,  

 n  j > j + 1, implying that the terms are increasing.  For j > 1
2

n  , though, the ratio is less 

than 1, meaning the terms are decreasing. 
 
2.6.62 Four months of daily performance create a need for roughly 120 different sets of jokes. If n 

denotes the number of different jokes that Mitch has to learn, the question is asking for the 

smallest n for which 120
4
n 

 
 

. By trial and error, n = 9.  
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2.6.63 Using Newton’s binomial expansion, the equation (1 + t)d  (1 + t)e = (1 + t)d+e can be written 

 
0 0 0

d e d e
j j j

j j j

d e d e
t t t

j j j



  

         
         

        
    

 Since the exponent k can arise as 0 kt t , 1 1kt t  , … ,  or 0kt t , it follows that 

...
0 1 1 0
d e d e d e

k k k
        

                  
 

d e
k
 

  
 

.  That is, 
d e

k
 

 
 

 = 
0

k

j

d e
j k j

  
    

 . 

 
 
Section 2.7: Combinatorial Probability 
 

2.7.1 
7 3 10
2 2 4
    
    
    

 

 

2.7.2 P(sum = 5) = 
6Number of pairs that sum to 5 22
2Total number of pairs 15
 

  
 

. 

 
2.7.3 P(numbers differ by more than 2) = 1  P(numbers differ by one)  P(numbers differ by 2)  

 = 1  
20 20 15319 18
2 2 190

   
    

   
 = 0.81. 

 
2.7.4 P(A  B) = P(A) + P(B)  P(A  B) 

=
4 48 52 4 48 52 4 4 44 52
4 9 13 4 9 13 4 4 5 13
               

                
               

 

 
2.7.5 Let A1 be the event that an urn with 3W and 3R is sampled; let A2 be the event that the urn 

with 5W and 1R is sampled.  Let B be the event that the three chips drawn are white.  By 
Bayes’ rule, 

 2 2
2

1 1 2 2

( | ) ( )( | )
( | ) ( ) ( | ) ( )

P B A P AP A B
P B A P A P B A P A




 = 

5 1 6
(1 /10)

3 0 3 10
193 3 6 5 1 6

(9 /10) (1 /10)
3 0 3 3 0 3

     
     

      
            

              
            

 

 

2.7.6 
502 100

1 50
   
   
   

 

 
2.7.7 6/6n = 1/6n1 
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2.7.8 There are 6 faces that could be the “three-of-a-kind” and 5 faces that could be the “two-of-a-
kind.”  Moreover, the five dice bearing those two numbers could occur in any of   

5!/2!3! = 
5
2
 
 
 

 orders.  It follows that P(“full house”) = 6  5  55
6

2
 
 
 

 = 450 6  

 
2.7.9 By Theorem, 2.6.2, the 2n grains of sand can be arranged in (2n)!/n!n! ways.  Two of those 

arrangements have the property that the colors will completely separate.  Therefore, the 
probability of the latter is 2(n!)2/(2n)! 

 
2.7.10 P(monkey spells CALCULUS) = 1/[8!/(2!)3(1!)2] = 1/5040; 
 P(monkey spells ALGEBRA) = 1/[7!/2!(1!)5] = 2/5040. 
 
2.7.11 P(different floors) = 7!/77;  P(same floor) = 7/77 = 1/76.  The assumption being made is that 

all possible departure patterns are equally likely, which is probably not true, since residents 
living on lower floors would be less inclined to wait for the elevator than would those living 
on the top floors. 

 

2.7.12 The total number of distinguishable permutations of the phrase is 23!
2!2!4!2!1!3!2!4!2!2!1!1!

. 

The number of permutations where all of the S’s are adjacent is counted by treating the S’s as 
a single letter that appears once. The denominator above will have one of the 4! replaced by 

1!. The number of such permutations, then, is 23!
2!2!4!2!1!3!2!1!2!2!1!1!

. The probability that 

the S’s are adjacent is then the ratio of these two terms or 4!23!/26! = 1/650. The requested 
probability is then the complement, 649/650. 

 
2.7.13 The 10 short pieces and 10 long pieces can be lined up in a row in 20!/(10)!(10)! ways.  

Consider each of the 10 pairs of consecutive pieces as defining the reconstructed sticks.  Each 
of those pairs could combine a short piece (S) and a long piece (L) in two ways:  SL or LS.  
Therefore, the number of permutations that would produce 10 sticks, each having a short and 

a long component is 210, so the desired probability is 10 20
2

10
 
 
 

. 

 
2.7.14 6!/66 
 

2.7.15 Any of 
2
k 
 
 

people could share any of 365 possible birthdays.  The remaining k  2 people 

can generate 364  363  (365  k + 2) sequences of distinct birthdays.  Therefore,  

P(exactly one match) = 
2
k 
 
 

 365  364  (365  k + 2)/365k. 

 

2.7.16 The expression 
12 11 10
1 1 1

   
   
   

 orders the denominations of the three single cards—in effect, 

each set of three denominations would be counted 3! times.  The denominator (= 
52
5

 
 
 

) in 

that particular probability calculation, though, does not consider the cards to be ordered.  To 
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be consistent, the denominations for the three single cards must be treated as a combination, 

meaning the number of choices is 
12
3

 
 
 

. 

 
2.7.17 To get a flush, Dana needs to draw any three of the remaining eleven diamonds.  Since only 

forty-seven cards are effectively left in the deck (others may already have been dealt, but 

their identities are unknown), P(Dana draws to flush) = 
11 47
3 3

   
   
   

. 

 
2.7.18 P(draws to full house or four-of-a-kind)  

= P(draws to full house) + P(draws to four-of-a-kind) = 3 1 4
47 47 47

  . 

 
2.7.19 There are two pairs of cards that would give Tim a straight flush (5 of clubs and 7 of clubs or 

7 of clubs and 10 of clubs).  Therefore, P(Tim draws to straight flush) = 
47

2
2

 
 
 

.  A flush, 

by definition, consists of five cards in the same suit whose denominations are not all 

consecutive.  It follows that P(Tim draws to flush) = 
10 47

2
2 2

    
    

    
, where the “2” refers 

to the straight flushes cited earlier. 
 
2.7.20 A sum of 48 requires four 10’s and an 8 or three 10’s and two 9’s; a sum of 49 requires four 

10’s and a 9; no sums higher than 49 are possible.  Therefore,  

 P(sum  48) = 
4 4 4 4 4 4 52 52

32
4 1 3 2 4 1 5 5

             
               

             
. 

 

2.7.21 
35 4 3 4 2 4 52

3 2 1 2 1 1 9
         
         
         

 

 

2.7.22 
32 52
13 13
   
   
   

 

 

2.7.23 
4

2 2 32 48
1 1 4 12

       
       
       

 

 


