
Chapter 1. Heat Equation

Section 1.2

1.2.9 (d) Circular cross section means that P = 2πr,A = πr2, and thus P/A = 2/r, where r is the radius.
Also γ = 0.

1.2.9 (e) u(x, t) = u(t) implies that

cρ
du

dt
= −2h

r
u .

The solution of this first-order linear differential equation with constant coefficients, which satisfies the
initial condition u(0) = u0, is

u(t) = u0 exp
[
− 2h

cρr
t

]
.

Section 1.3

1.3.2 ∂u/∂x is continuous if K0(x0−) = K0(x0+), that is, if the conductivity is continuous.

Section 1.4

1.4.1 (a) Equilibrium satisfies (1.4.14), d2u/dx2 = 0, whose general solution is (1.4.17), u = c1 + c2x. The
boundary condition u(0) = 0 implies c1 = 0 and u(L) = T implies c2 = T/L so that u = Tx/L.

1.4.1 (d) Equilibrium satisfies (1.4.14), d2u/dx2 = 0, whose general solution (1.4.17), u = c1 + c2x. From
the boundary conditions, u(0) = T yields T = c1 and du/dx(L) = α yields α = c2. Thus u = T + αx.

1.4.1 (f) In equilibrium, (1.2.9) becomes d2u/dx2 = −Q/K0 = −x2 , whose general solution (by integrating
twice) is u = −x4/12 + c1 + c2x. The boundary condition u(0) = T yields c1 = T , while du/dx(L) = 0
yields c2 = L3/3. Thus u = −x4/12 + L3x/3 + T .

1.4.1 (h) Equilibrium satisfies d2u/dx2 = 0. One integration yields du/dx = c2, the second integration
yields the general solution u = c1 + c2x.

x = 0 : c2 − (c1 − T ) = 0
x = L : c2 = α and thus c1 = T + α.

Therefore, u = (T + α) + αx = T + α(x + 1).

1.4.7 (a) For equilibrium:

d2u

dx2
= −1 implies u = −x2

2
+ c1x + c2 and

du

dx
= −x + c1.

From the boundary conditions du
dx (0) = 1 and du

dx (L) = β, c1 = 1 and −L + c1 = β which is consistent
only if β + L = 1. If β = 1 − L, there is an equilibrium solution (u = −x2

2 + x + c2). If β 6= 1 − L,
there isn’t an equilibrium solution. The difficulty is caused by the heat flow being specified at both
ends and a source specified inside. An equilibrium will exist only if these three are in balance. This
balance can be mathematically verified from conservation of energy:

d

dt

∫ L

0

cρu dx = −du

dx
(0) +

du

dx
(L) +

∫ L

0

Q0 dx = −1 + β + L.

If β + L = 1, then the total thermal energy is constant and the initial energy = the final energy:
∫ L

0

f(x) dx =
∫ L

0

(
−x2

2
+ x + c2

)
dx, which determines c2.

If β + L 6= 1, then the total thermal energy is always changing in time and an equilibrium is never
reached.

1



Section 1.5

1.5.9 (a) In equilibrium, (1.5.14) using (1.5.19) becomes d
dr

(
r du

dr

)
= 0. Integrating once yields rdu/dr = c1

and integrating a second time (after dividing by r) yields u = c1 ln r+c2. An alternate general solution
is u = c1 ln(r/r1) + c3. The boundary condition u(r1) = T1 yields c3 = T1, while u(r2) = T2 yields
c1 = (T2 − T1)/ ln(r2/r1). Thus, u = 1

ln(r2/r1)
[(T2 − T1) ln r/r1 + T1 ln(r2/r1)].

1.5.11 For equilibrium, the radial flow at r = a, 2πaβ, must equal the radial flow at r = b, 2πb. Thus β = b/a.

1.5.13 From exercise 1.5.12, in equilibrium d
dr

(
r2 du

dr

)
= 0. Integrating once yields r2du/dr = c1 and integrat-

ing a second time (after dividing by r2 ) yields u = −c1/r + c2. The boundary conditions u(4) = 80
and u(1) = 0 yields 80 = −c1/4 + c2 and 0 = −c1 + c2. Thus c1 = c2 = 320/3 or u = 320

3

(
1− 1

r

)
.
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