Chapter 1. Heat Equation

Section 1.2

1.2.9 (d) Circular cross section means that P = 27r, A = 7r?, and thus P/A = 2/r, where r is the radius.
Also v =0.

1.2.9 (e) wu(z,t) = u(t) implies that
du _ 2h

Par T r

The solution of this first-order linear differential equation with constant coefficients, which satisfies the
initial condition u(0) = wuy, is

2h
u(t) = ug exp _Jt .

Section 1.3

1.3.2 Ou/0z is continuous if Ko(xg—) = Ko(xo+), that is, if the conductivity is continuous.

Section 1.4

1.4.1 (a) Equilibrium satisfies (1.4.14), d?u/dz? = 0, whose general solution is (1.4.17), u = ¢; + cax. The
boundary condition «(0) = 0 implies ¢; = 0 and w(L) = T implies ¢co = T/L so that u = Tz/L.

1.4.1 (d) Equilibrium satisfies (1.4.14), d?u/dz? = 0, whose general solution (1.4.17), u = ¢; + cox. From
the boundary conditions, u(0) = T yields T' = ¢; and du/dz(L) = « yields a = ¢3. Thus u =T + azx.

1.4.1 (f) In equilibrium, (1.2.9) becomes d?u/dz* = —Q/Ko = —x? , whose general solution (by integrating
twice) is u = —2*/12 + ¢; + caz. The boundary condition u(0) = T yields ¢; = T, while du/dz(L) = 0
yields eo = L3/3. Thus u = —2*/12 + L3z /3 + T.

1.4.1 (h) Equilibrium satisfies d?u/dz? = 0. One integration yields du/dx = ca, the second integration
yields the general solution u = ¢; + cox.

x=0: ca—(c1—T)=0
t=L: ca=«aandthusc; =T + a.

Therefore, u = (T + ) + ax =T + a(z + 1).

1.4.7 (a) For equilibrium:

d*u 1 imoli z? n n q du n
— = —limpliesu=——+4c1z+c and — = —x +¢;.
dx? P 2 ! 2 dx !
From the boundary conditions 9%(0) = 1 and 24(L) = 8,¢; = 1 and —L + ¢; = 3 which is consistent

only if 5+ L =1. If 8 =1 — L, there is an equilibrium solution (u = —% +ax+c) UB#£1-L,
there isn’t an equilibrium solution. The difficulty is caused by the heat flow being specified at both
ends and a source specified inside. An equilibrium will exist only if these three are in balance. This
balance can be mathematically verified from conservation of energy:

L L

du du
s dr = —20)+ 2L dr = 1 L.
i /. cpu dx dz( )+d:z( )+/0 Qo dx + 06+

If B+ L =1, then the total thermal energy is constant and the initial energy = the final energy:

L L 2
/ flx) de = / (z2 +x+ 02) dzx, which determines cs.
0 0

If B+ L # 1, then the total thermal energy is always changing in time and an equilibrium is never
reached.



Section 1.5

1.5.9 (a) In equilibrium, (1.5.14) using (1.5.19) becomes - (r4) = 0. Integrating once yields rdu/dr = ¢
and integrating a second time (after dividing by r) yields v = ¢; Inr +co. An alternate general solution
is w = ¢ In(r/r1) 4+ ¢3. The boundary condition u(ry) = Ty yields ¢3 = Ty, while u(rq) = Ty yields
c¢1 = (To —T1)/In(ry/ry). Thus, u = m [(To —T1)lnr/ry + Ty In(rey/71)].

1.5.11 For equilibrium, the radial flow at r = a, 27a(, must equal the radial flow at » = b, 2wb. Thus 8 = b/a.

1.5.13 From exercise 1.5.12, in equilibrium % (7’2%) = 0. Integrating once yields r2du/dr = c; and integrat-
ing a second time (after dividing by 72 ) yields u = —c;/r + ca. The boundary conditions u(4) = 80

and u(1) = 0 yields 80 = —¢1/4 4+ ¢2 and 0 = —¢3 + 2. Thus ¢; = ¢o = 320/3 or u = % (1 — %)



