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1. Methods of Proof and Some Notation

1.1

A B not A not B A⇒B (not B)⇒(not A)

F F T T T T

F T T F T T

T F F T F F

T T F F T T

1.2

A B not A not B A⇒B not (A and (not B))

F F T T T T

F T T F T T

T F F T F F

T T F F T T

1.3

A B not (A and B) not A not B (not A) or (not B))

F F T T T T

F T T T F T

T F T F T T

T T F F F F

1.4

A B A and B A and (not B) (A and B) or (A and (not B))

F F F F F

F T F F F

T F F T T

T T T F T

1.5
The cards that you should turn over are 3 and A. The remaining cards are irrelevant to ascertaining the
truth or falsity of the rule. The card with S is irrelevant because S is not a vowel. The card with 8 is not
relevant because the rule does not say that if a card has an even number on one side, then it has a vowel on
the other side.

Turning over the A card directly verifies the rule, while turning over the 3 card verifies the contraposition.

2. Vector Spaces and Matrices

2.1
We show this by contradiction. Suppose n < m. Then, the number of columns of A is n. Since rank A is
the maximum number of linearly independent columns of A, then rank A cannot be greater than n < m,
which contradicts the assumption that rank A = m.

2.2

⇒: Since there exists a solution, then by Theorem 2.1, rank A = rank[A
...b]. So, it remains to prove that

rank A = n. For this, suppose that rank A < n (note that it is impossible for rankA > n since A has
only n columns). Hence, there exists y ∈ Rn, y 6= 0, such that Ay = 0 (this is because the columns of
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A are linearly dependent, and Ay is a linear combination of the columns of A). Let x be a solution to
Ax = b. Then clearly x + y 6= x is also a solution. This contradicts the uniqueness of the solution. Hence,
rank A = n.
⇐: By Theorem 2.1, a solution exists. It remains to prove that it is unique. For this, let x and y be

solutions, i.e., Ax = b and Ay = b. Subtracting, we get A(x − y) = 0. Since rank A = n and A has n
columns, then x− y = 0 and hence x = y, which shows that the solution is unique.

2.3
Consider the vectors āi = [1,a>i ]> ∈ Rn+1, i = 1, . . . , k. Since k ≥ n + 2, then the vectors ā1, . . . , āk must
be linearly independent in Rn+1. Hence, there exist α1, . . . αk, not all zero, such that

k∑
i=1

αiai = 0.

The first component of the above vector equation is
∑k

i=1 αi = 0, while the last n components have the form∑k
i=1 αiai = 0, completing the proof.

2.4
a. We first postmultiply M by the matrix [

Ik O

−Mm−k,k Im−k

]
to obtain [

Mm−k,k Im−k

Mk,k O

][
Ik O

−Mm−k,k Im−k

]
=

[
O Im−k

Mk,k O

]
.

Note that the determinant of the postmultiplying matrix is 1. Next we postmultiply the resulting product
by [

O Ik

Im−k O

]
to obtain [

O Im−k

Mk,k O

][
O Ik

Im−k O

]
=

[
Ik O

O Mk,k

]
.

Notice that

det M = det

([
Ik O

O Mk,k

])
det

([
O Ik

Im−k O

])
,

where

det

([
O Ik

Im−k O

])
= ±1.

The above easily follows from the fact that the determinant changes its sign if we interchange columns, as
discussed in Section 2.2. Moreover,

det

([
Ik O

O Mk,k

])
= det(Ik) det(Mk,k) = det(Mk,k).

Hence,
det M = ±det Mk,k.

b. We can see this on the following examples. We assume, without loss of generality that Mm−k,k = O and
let Mk,k = 2. Thus k = 1. First consider the case when m = 2. Then we have

M =

[
O Im−k

Mk,k O

]
=

[
0 1
2 0

]
.
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Thus,
det M = −2 = det (−Mk,k) .

Next consider the case when m = 3. Then

det

[
O Im−k

Mk,k O

]
= det


0

... 1 0

0
... 0 1

· · · · · · · · · · · ·

2
... 0 0

 = 2 6= det (−Mk,k) .

Therefore, in general,
det M 6= det (−Mk,k)

However, when k = m/2, that is, when all sub-matrices are square and of the same dimension, then it is
true that

det M = det (−Mk,k) .

See [121].

2.5
Let

M =

[
A B

C D

]
and suppose that each block is k × k. John R. Silvester [121] showed that if at least one of the blocks is
equal to O (zero matrix), then the desired formula holds. Indeed, if a row or column block is zero, then the
determinant is equal to zero as follows from the determinant’s properties discussed Section 2.2. That is, if
A = B = O, or A = C = O, and so on, then obviously det M = 0. This includes the case when any three
or all four block matrices are zero matrices.

If B = O or C = O then

det M = det

[
A B

C D

]
= det (AD) .

The only case left to analyze is when A = O or D = O. We will show that in either case,

det M = det (−BC) .

Without loss of generality suppose that D = O. Following arguments of John R. Silvester [121], we premul-
tiply M by the product of three matrices whose determinants are unity:[

Ik −Ik

O Ik

][
Ik O

Ik Ik

][
Ik −Ik

O Ik

][
A B

C O

]
=

[
−C O

A B

]
.

Hence,

det

[
A B

C O

]
=

[
−C O

A B

]
= det (−C) detB

= det (−Ik) detC det B.

Thus we have

det

[
A B

C O

]
= det (−BC) = det (−CB) .
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2.6
We represent the given system of equations in the form Ax = b, where

A =

[
1 1 2 1
1 −2 0 −1

]
, x =


x1

x2

x3

x4

 , and b =

[
1
−2

]
.

Using elementary row operations yields

A =

[
1 1 2 1
1 −2 0 −1

]
→

[
1 1 2 1
0 −3 −2 −2

]
, and

[A, b] =

[
1 1 2 1 1
1 −2 0 −1 −2

]
→

[
1 1 2 1 1
0 −3 −2 −2 −3

]
,

from which rank A = 2 and rank[A, b] = 2. Therefore, by Theorem 2.1, the system has a solution.
We next represent the system of equations as[

1 1
1 −2

][
x1

x2

]
=

[
1− 2x3 − x4

−2 + x4

]
Assigning arbitrary values to x3 and x4 (x3 = d3, x4 = d4), we get[

x1

x2

]
=

[
1 1
1 −2

]−1 [
1− 2x3 − x4

−2 + x4

]

= −1
3

[
−2 −1
−1 1

][
1− 2x3 − x4

−2 + x4

]

=

[
− 4

3d3 − 1
3d4

1− 2
3d3 − 2

3d4

]
.

Therefore, a general solution is
x1

x2

x3

x4

 =


− 4

3d3 − 1
3d4

1− 2
3d3 − 2

3d4

d3

d4

 =


− 4

3

− 2
3

1
0

 d3 +


− 1

3

− 2
3

0
1

 d4 +


0
1
0
0

 ,

where d3 and d4 are arbitrary values.

2.7
1. Apply the definition of | − a|:

| − a| =


−a if −a > 0
0 if −a = 0
−(−a) if −a < 0

=


−a if a < 0
0 if a = 0
a if a > 0

= |a|.

2. If a ≥ 0, then |a| = a. If a < 0, then |a| = −a > 0 > a. Hence |a| ≥ a. On the other hand, | − a| ≥ −a
(by the above). Hence, a ≥ −| − a| = −|a| (by property 1).
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3. We have four cases to consider. First, if a, b ≥ 0, then a + b ≥ 0. Hence, |a + b| = a + b = |a|+ |b|.
Second, if a, b ≥ 0, then a + b ≤ 0. Hence |a + b| = −(a + b) = −a− b = |a|+ |b|.
Third, if a ≥ 0 and b ≤ 0, then we have two further subcases:

1. If a + b ≥ 0, then |a + b| = a + b ≤ |a|+ |b|.

2. If a + b ≤ 0, then |a + b| = −a− b ≤ |a|+ |b|.

The fourth case, a ≤ 0 and b ≥ 0, is identical to the third case, with a and b interchanged.
4. We first show |a− b| ≤ |a|+ |b|. We have

|a− b| = |a + (−b)|
≤ |a|+ | − b| by property 3
= |a|+ |b| by property 1.

To show ||a|−|b|| ≤ |a−b|, we note that |a| = |a−b+b| ≤ |a−b|+ |b|, which implies |a|−|b| ≤ |a−b|. On the
other hand, from the above we have |b| − |a| ≤ |b− a| = |a− b| by property 1. Therefore, ||a| − |b|| ≤ |a− b|.

5. We have four cases. First, if a, b ≥ 0, we have ab ≥ 0 and hence |ab| = ab = |a||b|. Second, if a, b ≤ 0,
we have ab ≥ 0 and hence |ab| = ab = (−a)(−b) = |a||b|. Third, if a ≤ 0, b ≤ 0, we have ab ≤ 0 and hence
|ab| = −ab = a(−b) = |a||b|. The fourth case, a ≤ 0 and b ≥ 0, is identical to the third case, with a and b
interchanged.

6. We have

|a + b| ≤ |a|+ |b| by property 3
≤ c + d.

7. ⇒: By property 2, −a ≤ |a| and a ≤ |a. Therefore, |a| < b implies −a ≤ |a| < b and a ≤ |a| < b.
⇐: If a ≥ 0, then |a| = a < b. If a < 0, then |a| = −a < b.
For the case when “<” is replaced by “≤”, we simply repeat the above proof with “<” replaced by “≤”.
8. This is simply the negation of property 7 (apply DeMorgan’s Law).

2.8
Observe that we can represent 〈x,y〉2 as

〈x,y〉2 = x>

[
2 3
3 5

]
y = (Qx)>(Qy) = x>Q2y,

where

Q =

[
1 1
1 2

]
.

Note that the matrix Q = Q> is nonsingular.
1. Now, 〈x,x〉2 = (Qx)>(Qx) = ‖Qx‖2 ≥ 0, and

〈x,x〉2 = 0 ⇔ ‖Qx‖2 = 0
⇔ Qx = 0

⇔ x = 0

since Q is nonsingular.
2. 〈x,y〉2 = (Qx)>(Qy) = (Qy)>(Qx) = 〈y,x〉2.
3. We have

〈x + y,z〉2 = (x + y)>Q2z

= x>Q2z + y>Q2z

= 〈x,z〉2 + 〈y,z〉2.
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4. 〈rx,y〉2 = (rx)>Q2y = rx>Q2y = r〈x,y〉2.
2.9
We have ‖x‖ = ‖(x−y)+y‖ ≤ ‖x−y‖+ ‖y‖ by the Triangle Inequality. Hence, ‖x‖−‖y‖ ≤ ‖x−y‖. On
the other hand, from the above we have ‖y‖ − ‖x‖ ≤ ‖y − x‖ = ‖x− y‖. Combining the two inequalities,
we obtain |‖x‖ − ‖y‖| ≤ ‖x− y‖.
2.10
Let ε > 0 be given. Set δ = ε. Hence, if ‖x− y‖ < δ, then by Exercise 2.9, |‖x‖ − ‖y‖| ≤ ‖x− y‖ < δ = ε.

3. Transformations

3.1
Let v be the vector such that x are the coordinates of v with respect to {e1, e2, . . . , en}, and x′ are the
coordinates of v with respect to {e′1, e′2, . . . , e′n}. Then,

v = x1e1 + · · ·+ xnen = [e1, . . . , en]x,

and
v = x′1e

′
1 + · · ·+ x′ne′n = [e′1, . . . , e

′
n]x′.

Hence,
[e1, . . . , en]x = [e′1, . . . , e

′
n]x′

which implies
x′ = [e′1, . . . , e

′
n]−1[e1, . . . , en]x = Tx.

3.2
a. We have

[e′1, e
′
2, e

′
3] = [e1, e2, e3]

 1 2 4
3 −1 5
−4 5 3

 .

Therefore,

T = [e′1, e
′
2, e

′
3]
−1[e1, e2, e3] =

 1 2 4
3 −1 5
−4 5 3


−1

=
1
42

 28 −14 −14
29 −19 −7
−11 13 7

 .

b. We have

[e1, e2, e3] = [e′1, e
′
2, e

′
3]

1 2 3
1 −1 0
3 4 5

 .

Therefore,

T =

1 2 3
1 −1 0
3 4 5

 .

3.3
We have

[e1, e2, e3] = [e′1, e
′
2, e

′
3]

 2 2 3
1 −1 0
−1 2 1

 .
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