AN INTRODUCTION TO OPTIMIZATION

SOLUTIONS MANUAL

Fourth Edition

Edwin K. P. Chong and Stanislaw H. Żak

A JOHN WILEY & SONS, INC., PUBLICATION

1. Methods of Proof and Some Notation

1.1 _____

A	В	not A	not B	A⇒B	$(\mathrm{not}\ \mathbf{B}){\Rightarrow}(\mathrm{not}\ \mathbf{A})$
F	F	Т	Т	Т	Т
\mathbf{F}	Т	Т	\mathbf{F}	Т	Т
Т	\mathbf{F}	F	Т	F	\mathbf{F}
Т	Т	F	\mathbf{F}	Т	Т

1.2 _

A	В	not A	not B	A⇒B	not (A and (not B))
F	\mathbf{F}	Т	Т	Т	Т
\mathbf{F}	Т	Т	\mathbf{F}	Т	Т
Т	\mathbf{F}	F	Т	F	\mathbf{F}
Т	Т	F	\mathbf{F}	Т	Т

1.3 _____

A	В	not (A and B)	not A	not B	(not A) or (not B))
F	F	Т	Т	Т	Т
\mathbf{F}	Т	Т	Т	\mathbf{F}	Т
Т	\mathbf{F}	Т	F	Т	Т
Т	Т	F	F	\mathbf{F}	F

1.4 ____

A	В	A and B	A and (not B)	(A and B) or (A and (not B))
F	F	F	\mathbf{F}	F
\mathbf{F}	Т	F	\mathbf{F}	F
Т	\mathbf{F}	F	Т	Т
Т	Т	Т	\mathbf{F}	Т

1.5 _____

The cards that you should turn over are 3 and A. The remaining cards are irrelevant to ascertaining the truth or falsity of the rule. The card with S is irrelevant because S is not a vowel. The card with 8 is not relevant because the rule does not say that if a card has an even number on one side, then it has a vowel on the other side.

Turning over the A card directly verifies the rule, while turning over the 3 card verifies the contraposition.

2. Vector Spaces and Matrices

2.1

We show this by contradiction. Suppose n < m. Then, the number of columns of A is n. Since rank A is the maximum number of linearly independent columns of A, then rank A cannot be greater than n < m, which contradicts the assumption that rank A = m.

2.2

 \Rightarrow : Since there exists a solution, then by Theorem 2.1, rank $\mathbf{A} = \operatorname{rank}[\mathbf{A}:\mathbf{b}]$. So, it remains to prove that rank $\mathbf{A} = n$. For this, suppose that rank $\mathbf{A} < n$ (note that it is impossible for rank $\mathbf{A} > n$ since \mathbf{A} has only n columns). Hence, there exists $\mathbf{y} \in \mathbb{R}^n$, $\mathbf{y} \neq \mathbf{0}$, such that $\mathbf{A}\mathbf{y} = \mathbf{0}$ (this is because the columns of

A are linearly dependent, and Ay is a linear combination of the columns of A). Let x be a solution to Ax = b. Then clearly $x + y \neq x$ is also a solution. This contradicts the uniqueness of the solution. Hence, rank A = n.

 \Leftarrow : By Theorem 2.1, a solution exists. It remains to prove that it is unique. For this, let x and y be solutions, i.e., Ax = b and Ay = b. Subtracting, we get A(x - y) = 0. Since rank A = n and A has n columns, then x - y = 0 and hence x = y, which shows that the solution is unique.

2.3_{-}

Consider the vectors $\bar{a}_i = [1, a_i^{\top}]^{\top} \in \mathbb{R}^{n+1}$, $i = 1, \ldots, k$. Since $k \ge n+2$, then the vectors $\bar{a}_1, \ldots, \bar{a}_k$ must be linearly independent in \mathbb{R}^{n+1} . Hence, there exist $\alpha_1, \ldots, \alpha_k$, not all zero, such that

$$\sum_{i=1}^k \alpha_i \boldsymbol{a}_i = \boldsymbol{0}.$$

The first component of the above vector equation is $\sum_{i=1}^{k} \alpha_i = 0$, while the last *n* components have the form $\sum_{i=1}^{k} \alpha_i a_i = 0$, completing the proof.

2.4

a. We first postmultiply M by the matrix

$$egin{bmatrix} oldsymbol{I}_k & oldsymbol{O} \ -oldsymbol{M}_{m-k,k} & oldsymbol{I}_{m-k} \end{bmatrix}$$

to obtain

$$egin{bmatrix} oldsymbol{M}_{m-k,k} & oldsymbol{I}_{m-k} \ oldsymbol{M}_{k,k} & oldsymbol{O} \end{bmatrix} egin{bmatrix} oldsymbol{I}_k & oldsymbol{O} \ -oldsymbol{M}_{m-k,k} & oldsymbol{I}_{m-k} \end{bmatrix} = egin{bmatrix} oldsymbol{O} & oldsymbol{I}_{m-k} \ oldsymbol{M}_{k,k} & oldsymbol{O} \end{bmatrix}$$

Note that the determinant of the postmultiplying matrix is 1. Next we postmultiply the resulting product by

$$egin{bmatrix} oldsymbol{O} & oldsymbol{I}_k \ oldsymbol{I}_{m-k} & oldsymbol{O} \end{bmatrix}$$

to obtain

$$egin{bmatrix} oldsymbol{O} & oldsymbol{I}_{m-k} \ oldsymbol{M}_{k,k} & oldsymbol{O} \end{bmatrix} egin{bmatrix} oldsymbol{O} & oldsymbol{I}_k \ oldsymbol{I}_{m-k} & oldsymbol{O} \end{bmatrix} = egin{bmatrix} oldsymbol{I}_k & oldsymbol{O} \ oldsymbol{O} & oldsymbol{M}_{k,k} \end{bmatrix}.$$

Notice that

where

$$\det \boldsymbol{M} = \det \left(\begin{bmatrix} \boldsymbol{I}_k & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{M}_{k,k} \end{bmatrix} \right) \det \left(\begin{bmatrix} \boldsymbol{O} & \boldsymbol{I}_k \\ \boldsymbol{I}_{m-k} & \boldsymbol{O} \end{bmatrix} \right),$$
$$\det \left(\begin{bmatrix} \boldsymbol{O} & \boldsymbol{I}_k \\ \boldsymbol{I}_{m-k} & \boldsymbol{O} \end{bmatrix} \right) = \pm 1.$$

The above easily follows from the fact that the determinant changes its sign if we interchange columns, as discussed in Section 2.2. Moreover,

$$\det \left(\begin{bmatrix} \boldsymbol{I}_k & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{M}_{k,k} \end{bmatrix} \right) = \det(\boldsymbol{I}_k) \det(\boldsymbol{M}_{k,k}) = \det(\boldsymbol{M}_{k,k}).$$

Hence,

$$\det \boldsymbol{M} = \pm \det \boldsymbol{M}_{k,k}.$$

b. We can see this on the following examples. We assume, without loss of generality that $M_{m-k,k} = O$ and let $M_{k,k} = 2$. Thus k = 1. First consider the case when m = 2. Then we have

$$\boldsymbol{M} = \begin{bmatrix} \boldsymbol{O} & \boldsymbol{I}_{m-k} \\ \boldsymbol{M}_{k,k} & \boldsymbol{O} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix}.$$

Thus,

$$\det \boldsymbol{M} = -2 = \det \left(-\boldsymbol{M}_{k,k} \right)$$

Next consider the case when m = 3. Then

$$\det \begin{bmatrix} \boldsymbol{O} & \boldsymbol{I}_{m-k} \\ \boldsymbol{M}_{k,k} & \boldsymbol{O} \end{bmatrix} = \det \begin{bmatrix} 0 & \vdots & 1 & 0 \\ 0 & \vdots & 0 & 1 \\ \dots & \dots & \dots & \dots \\ 2 & \vdots & 0 & 0 \end{bmatrix} = 2 \neq \det \left(-\boldsymbol{M}_{k,k} \right).$$

Therefore, in general,

 $\det \boldsymbol{M} \neq \det \left(-\boldsymbol{M}_{k,k}\right)$

However, when k = m/2, that is, when all sub-matrices are square and of the same dimension, then it is true that

$$\det \boldsymbol{M} = \det \left(-\boldsymbol{M}_{k,k}\right).$$

See [121].

 $\mathbf{2.5}$.

Let

$$M = egin{bmatrix} A & B \ C & D \end{bmatrix}$$

and suppose that each block is $k \times k$. John R. Silvester [121] showed that if at least one of the blocks is equal to O (zero matrix), then the desired formula holds. Indeed, if a row or column block is zero, then the determinant is equal to zero as follows from the determinant's properties discussed Section 2.2. That is, if A = B = O, or A = C = O, and so on, then obviously det M = 0. This includes the case when any three or all four block matrices are zero matrices.

If B = O or C = O then

$$\det M = \det \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \det (AD).$$

The only case left to analyze is when A = O or D = O. We will show that in either case,

 $\det M = \det \left(-BC \right).$

Without loss of generality suppose that D = O. Following arguments of John R. Silvester [121], we premultiply M by the product of three matrices whose determinants are unity:

$$\begin{bmatrix} I_k & -I_k \\ O & I_k \end{bmatrix} \begin{bmatrix} I_k & O \\ I_k & I_k \end{bmatrix} \begin{bmatrix} I_k & -I_k \\ O & I_k \end{bmatrix} \begin{bmatrix} A & B \\ C & O \end{bmatrix} = \begin{bmatrix} -C & O \\ A & B \end{bmatrix}$$

Hence,

$$\det \begin{bmatrix} A & B \\ C & O \end{bmatrix} = \begin{bmatrix} -C & O \\ A & B \end{bmatrix}$$
$$= \det (-C) \det B$$
$$= \det (-I_k) \det C \det B.$$

Thus we have

$$\det \begin{bmatrix} A & B \\ C & O \end{bmatrix} = \det (-BC) = \det (-CB)$$

_

We represent the given system of equations in the form Ax = b, where

$$m{A} = egin{bmatrix} 1 & 1 & 2 & 1 \ 1 & -2 & 0 & -1 \end{bmatrix}, \quad m{x} = egin{bmatrix} x_1 \ x_2 \ x_3 \ x_4 \end{bmatrix}, \quad ext{and} \quad m{b} = egin{bmatrix} 1 \ -2 \end{bmatrix}.$$

Using elementary row operations yields

2.6 _____

$$\boldsymbol{A} = \begin{bmatrix} 1 & 1 & 2 & 1 \\ 1 & -2 & 0 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 2 & 1 \\ 0 & -3 & -2 & -2 \end{bmatrix}, \text{ and}$$
$$[\boldsymbol{A}, \boldsymbol{b}] = \begin{bmatrix} 1 & 1 & 2 & 1 & 1 \\ 1 & -2 & 0 & -1 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 2 & 1 & 1 \\ 0 & -3 & -2 & -2 & -3 \end{bmatrix},$$

from which rank A = 2 and rank [A, b] = 2. Therefore, by Theorem 2.1, the system has a solution.

We next represent the system of equations as

$$\begin{bmatrix} 1 & 1 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 - 2x_3 - x_4 \\ -2 + x_4 \end{bmatrix}$$

Assigning arbitrary values to x_3 and x_4 ($x_3 = d_3$, $x_4 = d_4$), we get

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -2 \end{bmatrix}^{-1} \begin{bmatrix} 1 - 2x_3 - x_4 \\ -2 + x_4 \end{bmatrix}$$
$$= -\frac{1}{3} \begin{bmatrix} -2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 - 2x_3 - x_4 \\ -2 + x_4 \end{bmatrix}$$
$$= \begin{bmatrix} -\frac{4}{3}d_3 - \frac{1}{3}d_4 \\ 1 - \frac{2}{3}d_3 - \frac{2}{3}d_4 \end{bmatrix}.$$

Therefore, a general solution is

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -\frac{4}{3}d_3 - \frac{1}{3}d_4 \\ 1 - \frac{2}{3}d_3 - \frac{2}{3}d_4 \\ d_3 \\ d_4 \end{bmatrix} = \begin{bmatrix} -\frac{4}{3} \\ -\frac{2}{3} \\ 1 \\ 0 \end{bmatrix} d_3 + \begin{bmatrix} -\frac{1}{3} \\ -\frac{2}{3} \\ 0 \\ 1 \end{bmatrix} d_4 + \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix},$$

where d_3 and d_4 are arbitrary values.

2.7 ____

1. Apply the definition of |-a|:

$$|-a| = \begin{cases} -a & \text{if } -a > 0\\ 0 & \text{if } -a = 0\\ -(-a) & \text{if } -a < 0 \end{cases}$$
$$= \begin{cases} -a & \text{if } a < 0\\ 0 & \text{if } a = 0\\ a & \text{if } a > 0 \end{cases}$$
$$= |a|.$$

2. If $a \ge 0$, then |a| = a. If a < 0, then |a| = -a > 0 > a. Hence $|a| \ge a$. On the other hand, $|-a| \ge -a$ (by the above). Hence, $a \ge -|-a| = -|a|$ (by property 1).

3. We have four cases to consider. First, if $a, b \ge 0$, then $a + b \ge 0$. Hence, |a + b| = a + b = |a| + |b|. Second, if $a, b \ge 0$, then $a + b \le 0$. Hence |a + b| = -(a + b) = -a - b = |a| + |b|. Third, if $a \ge 0$ and $b \le 0$, then we have two further subcases:

1. If $a + b \ge 0$, then $|a + b| = a + b \le |a| + |b|$.

2. If $a + b \le 0$, then $|a + b| = -a - b \le |a| + |b|$.

The fourth case, $a \le 0$ and $b \ge 0$, is identical to the third case, with a and b interchanged. 4. We first show $|a - b| \le |a| + |b|$. We have

$$\begin{aligned} |a-b| &= |a+(-b)| \\ &\leq |a|+|-b| \quad \text{by property 3} \\ &= |a|+|b| \quad \text{by property 1.} \end{aligned}$$

To show $||a| - |b|| \le |a - b|$, we note that $|a| = |a - b + b| \le |a - b| + |b|$, which implies $|a| - |b| \le |a - b|$. On the other hand, from the above we have $|b| - |a| \le |b - a| = |a - b|$ by property 1. Therefore, $||a| - |b|| \le |a - b|$.

5. We have four cases. First, if $a, b \ge 0$, we have $ab \ge 0$ and hence |ab| = ab = |a||b|. Second, if $a, b \le 0$, we have $ab \ge 0$ and hence |ab| = ab = (-a)(-b) = |a||b|. Third, if $a \le 0$, $b \le 0$, we have $ab \le 0$ and hence |ab| = -ab = a(-b) = |a||b|. The fourth case, $a \le 0$ and $b \ge 0$, is identical to the third case, with a and b interchanged.

6. We have

$$|a+b| \leq |a|+|b|$$
 by property 3
 $< c+d.$

7. \Rightarrow : By property 2, $-a \le |a|$ and $a \le |a|$. Therefore, |a| < b implies $-a \le |a| < b$ and $a \le |a| < b$. \Leftarrow : If $a \ge 0$, then |a| = a < b. If a < 0, then |a| = -a < b.

For the case when "<" is replaced by " \leq ", we simply repeat the above proof with "<" replaced by " \leq ". 8. This is simply the negation of property 7 (apply DeMorgan's Law).

2.8 -

Observe that we can represent $\langle \boldsymbol{x}, \boldsymbol{y} \rangle_2$ as

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle_2 = \boldsymbol{x}^\top \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix} \boldsymbol{y} = (\boldsymbol{Q} \boldsymbol{x})^\top (\boldsymbol{Q} \boldsymbol{y}) = \boldsymbol{x}^\top \boldsymbol{Q}^2 \boldsymbol{y},$$

where

$$oldsymbol{Q} = egin{bmatrix} 1 & 1 \ 1 & 2 \end{bmatrix}$$

Note that the matrix $\boldsymbol{Q} = \boldsymbol{Q}^{\top}$ is nonsingular.

1. Now, $\langle \boldsymbol{x}, \boldsymbol{x} \rangle_2 = (\boldsymbol{Q}\boldsymbol{x})^\top (\boldsymbol{Q}\boldsymbol{x}) = \|\boldsymbol{Q}\boldsymbol{x}\|^2 \ge 0$, and

$$\langle \boldsymbol{x}, \boldsymbol{x} \rangle_2 = 0 \quad \Leftrightarrow \quad \|\boldsymbol{Q}\boldsymbol{x}\|^2 = 0$$

 $\Leftrightarrow \quad \boldsymbol{Q}\boldsymbol{x} = \mathbf{0}$
 $\Leftrightarrow \quad \boldsymbol{x} = \mathbf{0}$

since Q is nonsingular.

2. $\langle \boldsymbol{x}, \boldsymbol{y} \rangle_2 = (\boldsymbol{Q} \boldsymbol{x})^\top (\boldsymbol{Q} \boldsymbol{y}) = (\boldsymbol{Q} \boldsymbol{y})^\top (\boldsymbol{Q} \boldsymbol{x}) = \langle \boldsymbol{y}, \boldsymbol{x} \rangle_2.$

3. We have

$$egin{array}{rcl} \langle m{x}+m{y},m{z}
angle_2&=&(m{x}+m{y})^{ op}m{Q}^2m{z}\ &=&m{x}^{ op}m{Q}^2m{z}+m{y}^{ op}m{Q}^2m{z}\ &=&\langlem{x},m{z}
angle_2+m{y}^{ op}m{Q}^2m{z}. \end{array}$$

4.
$$\langle r\boldsymbol{x}, \boldsymbol{y} \rangle_2 = (r\boldsymbol{x})^\top \boldsymbol{Q}^2 \boldsymbol{y} = r\boldsymbol{x}^\top \boldsymbol{Q}^2 \boldsymbol{y} = r \langle \boldsymbol{x}, \boldsymbol{y} \rangle_2.$$

2.9_{-}

We have $\|\boldsymbol{x}\| = \|(\boldsymbol{x} - \boldsymbol{y}) + \boldsymbol{y}\| \le \|\boldsymbol{x} - \boldsymbol{y}\| + \|\boldsymbol{y}\|$ by the Triangle Inequality. Hence, $\|\boldsymbol{x}\| - \|\boldsymbol{y}\| \le \|\boldsymbol{x} - \boldsymbol{y}\|$. On the other hand, from the above we have $\|\boldsymbol{y}\| - \|\boldsymbol{x}\| \le \|\boldsymbol{y} - \boldsymbol{x}\| = \|\boldsymbol{x} - \boldsymbol{y}\|$. Combining the two inequalities, we obtain $\|\|\boldsymbol{x}\| - \|\boldsymbol{y}\| \le \|\boldsymbol{x} - \boldsymbol{y}\|$.

2.10 –

Let $\epsilon > 0$ be given. Set $\delta = \epsilon$. Hence, if $||\mathbf{x} - \mathbf{y}|| < \delta$, then by Exercise 2.9, $|||\mathbf{x}|| - ||\mathbf{y}|| \le ||\mathbf{x} - \mathbf{y}|| < \delta = \epsilon$.

3. Transformations

3.1 _

Let v be the vector such that x are the coordinates of v with respect to $\{e_1, e_2, \ldots, e_n\}$, and x' are the coordinates of v with respect to $\{e'_1, e'_2, \ldots, e'_n\}$. Then,

$$\boldsymbol{v} = x_1 \boldsymbol{e}_1 + \cdots + x_n \boldsymbol{e}_n = [\boldsymbol{e}_1, \dots, \boldsymbol{e}_n] \boldsymbol{x},$$

and

$$\boldsymbol{v} = x_1' \boldsymbol{e}_1' + \dots + x_n' \boldsymbol{e}_n' = [\boldsymbol{e}_1', \dots, \boldsymbol{e}_n'] \boldsymbol{x}'$$

Hence,

$$[oldsymbol{e}_1,\ldots,oldsymbol{e}_n]oldsymbol{x}=[oldsymbol{e}_1',\ldots,oldsymbol{e}_n']oldsymbol{x}'$$

which implies

$$oldsymbol{x}' = [oldsymbol{e}_1',\ldots,oldsymbol{e}_n']^{-1}[oldsymbol{e}_1,\ldots,oldsymbol{e}_n]oldsymbol{x} = oldsymbol{T}oldsymbol{x}.$$

3.2 _

a. We have

$$[\boldsymbol{e}_1', \boldsymbol{e}_2', \boldsymbol{e}_3'] = [\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3] \begin{bmatrix} 1 & 2 & 4 \\ 3 & -1 & 5 \\ -4 & 5 & 3 \end{bmatrix}.$$

Therefore,

$$\boldsymbol{T} = [\boldsymbol{e}_1', \boldsymbol{e}_2', \boldsymbol{e}_3']^{-1}[\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3] = \begin{bmatrix} 1 & 2 & 4 \\ 3 & -1 & 5 \\ -4 & 5 & 3 \end{bmatrix}^{-1} = \frac{1}{42} \begin{bmatrix} 28 & -14 & -14 \\ 29 & -19 & -7 \\ -11 & 13 & 7 \end{bmatrix}.$$

b. We have

$$[\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3] = [\boldsymbol{e}_1', \boldsymbol{e}_2', \boldsymbol{e}_3'] \begin{bmatrix} 1 & 2 & 3 \\ 1 & -1 & 0 \\ 3 & 4 & 5 \end{bmatrix}.$$

Therefore,

$$\boldsymbol{T} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & -1 & 0 \\ 3 & 4 & 5 \end{bmatrix}$$

3.3 _

We have

$$[\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3] = [\boldsymbol{e}_1', \boldsymbol{e}_2', \boldsymbol{e}_3'] \begin{bmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{bmatrix}.$$