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1. Methods of Proof and Some Notation

1.1
A B |notA notB | A=B (not B)=(not A)
F F T T T T
F T T F T T
T F F T F F
T T F F T T
1.2
A B |notA notB | A=B not (A and (not B))
F F T T T T
F T T F T T
T F F T F F
T T F F T T
1.3
A B | not (Aand B) | not A not B | (not A) or (not B))
F F T T T T
F T T T F T
T F T F T T
T T F F F F
1.4
A B | AandB A and (not B) | (A and B) or (A and (not B))
F F F F F
F T F F F
T F F T T
T T T F T
1.5

The cards that you should turn over are 3 and A. The remaining cards are irrelevant to ascertaining the
truth or falsity of the rule. The card with .S is irrelevant because S is not a vowel. The card with 8 is not
relevant because the rule does not say that if a card has an even number on one side, then it has a vowel on
the other side.

Turning over the A card directly verifies the rule, while turning over the 3 card verifies the contraposition.

2. Vector Spaces and Matrices

2.1
We show this by contradiction. Suppose n < m. Then, the number of columns of A is n. Since rank A is
the maximum number of linearly independent columns of A, then rank A cannot be greater than n < m,
which contradicts the assumption that rank A = m.

2.2

=: Since there exists a solution, then by Theorem 2.1, rank A = rank[Afb]. So, it remains to prove that
rank A = n. For this, suppose that rank A < n (note that it is impossible for rank A > n since A has
only n columns). Hence, there exists y € R", y # 0, such that Ay = 0 (this is because the columns of
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A are linearly dependent, and Ay is a linear combination of the columns of A). Let @ be a solution to
Az = b. Then clearly = + y # x is also a solution. This contradicts the uniqueness of the solution. Hence,
rank A = n.

<: By Theorem 2.1, a solution exists. It remains to prove that it is unique. For this, let  and y be
solutions, i.e., Ax = b and Ay = b. Subtracting, we get A(x —y) = 0. Since rank A = n and A has n
columns, then & — y = 0 and hence = y, which shows that the solution is unique.

2.3
Consider the vectors @; = [1,a;]" € R"1 i =1,... k. Since k > n + 2, then the vectors @, ..., a; must
be linearly independent in R™"*'. Hence, there exist o, ...y, not all zero, such that

k
E o;a; = 0.
i=1

The first component of the above vector equation is Zle a; = 0, while the last n components have the form

Zle a;a; = 0, completing the proof.

2.4
a. We first postmultiply M by the matrix

I, (0]
Mg Ik

Mok Ik I O | | O I,
My, i O M Ik My, O |’

Note that the determinant of the postmultiplying matrix is 1. Next we postmultiply the resulting product
by
0] Iy
I, O
O Im,k o Ik _ Ik o
My, O L. O] |O M|
Ik o 0 Ik:
det M = det det
o I,
det = +1.

The above easily follows from the fact that the determinant changes its sign if we interchange columns, as
discussed in Section 2.2. Moreover,

to obtain

to obtain
Notice that

where

det Qﬁ M(Z,kD — det(Iy) det (M) = det(Myp).

Hence,
det M = +det Mk,k~

b. We can see this on the following examples. We assume, without loss of generality that M,,_j , = O and
let My, = 2. Thus k = 1. First consider the case when m = 2. Then we have

v—| @ Imx|_ |0 1}
My, O 2 0
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Thus,
det M = —2 = det (_Mk,k) .

Next consider the case when m = 3. Then

0 1 0
O  In-y 0 0 1
det = det — 2 # det (—M.).
.2, ] e
2 0 0

Therefore, in general,
det M 7é det (_Mk,k)

However, when k = m/2, that is, when all sub-matrices are square and of the same dimension, then it is
true that
det M = det (_Mk,k’) .

See [121].
2.5
Let
A B
M =

and suppose that each block is k x k. John R. Silvester [121] showed that if at least one of the blocks is
equal to O (zero matrix), then the desired formula holds. Indeed, if a row or column block is zero, then the
determinant is equal to zero as follows from the determinant’s properties discussed Section 2.2. That is, if
A=B=0,0r A=C = 0, and so on, then obviously det M = 0. This includes the case when any three
or all four block matrices are zero matrices.

If B=0O or C = O then

A B
det M = det [C D]—det(AD).

The only case left to analyze is when A = O or D = O. We will show that in either case,
det M = det (—BC).

Without loss of generality suppose that D = O. Following arguments of John R. Silvester [121], we premul-
tiply M by the product of three matrices whose determinants are unity:

I, -I;||I, O||I, -I)|A B| |-C O
o I, ||I. I,||lOo I,||Cc Oo| | A B|
Hence,
dot A Bl |-C O
c o| A B
det (—C) det B
= det (—1Ij)det Cdet B.

Thus we have

A B
det [C 0] =det (—BC) = det (-CB).



2.6

We represent the given system of equations in the form Ax = b, where
Z1
11 2 1 1
A= , = "%, and b= .
1 -2 0 -1 T3 —2

Tyq

Using elementary row operations yields

A:1121—>1121,and
1 -2 0 -1 0 -3 -2 -2

1 1 2 1 1
[A’b] = —
1 -2 0 -1 -2

1 1 2 1 1
0 -3 -2 -2 -3’

from which rank A = 2 and rank[A, b] = 2. Therefore, by Theorem 2.1, the system has a solution.
We next represent the system of equations as

1 1 x| | 1—2x3 — 14
1 —2| (x| | -2+
Assigning arbitrary values to x3 and x4 (x5 = ds3, 4 = dy), we get
-1
X1 . 1 1 1— 2583 — Tq
za| |1 =2 —2 414
- 1]-2 -1 1-—- 23?3 — X4
T 30-1 1 —2 414

[t
—2d3 — 2d4

Therefore, a general solution is

T —3d3 — 3d4 -3 -3 0
2 2 2 2
v2| _ (l=gds—gda) -5 |75 g |
T3 d3 1 3 + 0 4+ 0 )
Ty dy 0 1 0
where d3 and d4 are arbitrary values.
2.7
1. Apply the definition of | — al:
—a if —a>0
|—al = <0 if —a=0
—(—a) if-a<0
—a ifa<0
= 0 ifa=0
a ifa>0
= lal.
2. If a > 0, then |a| = a. If a < 0, then |a|] = —a > 0 > a. Hence |a| > a. On the other hand, | —a| > —a
(by the above). Hence, a > —| — a| = —|a| (by property 1).
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3. We have four cases to consider. First, if a,b > 0, then a + b > 0. Hence, |a + b| = a + b = |a| + |b].
Second, if a,b > 0, then a + b < 0. Hence |a +b| = —(a +b) = —a — b= |a| + |b].
Third, if a > 0 and b < 0, then we have two further subcases:

1. If a+b >0, then |a + b] = a+ b < |a| + |b].
2. Ifa+b<0, then |a+ b = —a —b < |a] + |b].

The fourth case, a < 0 and b > 0, is identical to the third case, with a and b interchanged.
4. We first show |a — b| < |a| + |b|. We have

la—bl = la+(-b)|
la| 4+ | — b] by property 3

IN

la| + |b] by property 1.

To show [|a| —[b]| < |a—b]|, we note that |a| = |a —b+b| < |a—b|+b|, which implies |a| — |b| < |a—b|. On the
other hand, from the above we have |b| — |a| < |b — a| = |a — b| by property 1. Therefore, ||a| — [b|| < |a — b

5. We have four cases. First, if a,b > 0, we have ab > 0 and hence |ab| = ab = |al[b|. Second, if a,b < 0,
we have ab > 0 and hence |ab| = ab = (—a)(=b) = |a||b|. Third, if a <0, b < 0, we have ab < 0 and hence

|ab] = —ab = a(—b) = |a||b|. The fourth case, a < 0 and b > 0, is identical to the third case, with a and b
interchanged.
6. We have
la+b < J|a|+ b by property 3
< c+d.

7. =: By property 2, —a < |a| and a < |a. Therefore, |a| < b implies —a < |a| < b and a < |a| < b.
<: If a >0, then |a] =a < b. If a <0, then |a| = —a < b.
For the case when “<” is replaced by “<”, we simply repeat the above proof with “<” replaced by “<”.
8. This is simply the negation of property 7 (apply DeMorgan’s Law).
2.8
Observe that we can represent (x,y)s as

2 3
(@, y)s =’ [3 5] y=(Qz) (Qy) ==z'Q,
where
1 1
Note that the matrix Q = Tis nonsingular.

1. Now, (z,z)s = (Qz) T (Qz) = ||Q=||*> > 0, and

(@2)=0 & [Qz|>=0
& Qr=0
& =0
since @ is nonsingular.
2. (z,y)2 = (Qx) " (Qy) = (Qy) " (Qx) = (y,x)2.
3. We have
({@+y,z)p = (2+y) Q%

— $7Q2z+yTQ2z
= <.’E,Z>2 + <y,Z>2.
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4. (rz,y)o = (rz) Q°y =z’ Q’y = r(z,y)>.

2.9

We have ||z|| = |[(x —y) + y|| < || —y]|| + ||y|| by the Triangle Inequality. Hence, ||| — ||y| < ||z —y]||. On
the other hand, from the above we have [ly|| — [|z|| < ||y — z|| = ||z — y[|. Combining the two inequalities,
we obtain |[|z|| — [[y[[| < ||z — y||.

2.10

Let € > 0 be given. Set § = €. Hence, if || — y|| < d, then by Exercise 2.9, |||z] — |y||| < ||z —y|| < d =e.

3. Transformations

3.1
Let v be the vector such that x are the coordinates of v with respect to {ej,es,...,e,}, and @’ are the
coordinates of v with respect to {e], €5, ..., el }. Then,
v=x1€1+ -+ Tpe, = [e1,...,e]T,
and
v=2zle| +---+ale =le,... el
Hence,
[61, ceey en}m = [ella SR e{n]m/
which implies
' =e),....e | el,...,e )z =Tx.
3.2
a. We have
1 2 4
[6/1561276213] = [61762763] 3 -1 5
-4 5 3
Therefore,
-1
1 2 4 1 28 —14 -—14
T =le},ehef] e en el = | 3 —1 5| =129 -19 -7
-4 5 3 —11 13 7
b. We have
2 3
[61762783] = [8/173/2782’)] 1 -1 0
4 5
Therefore,
1 2 3
T=1]1 -1 0
3 4 5
3.3
We have
2 2 3
[e1,es,e3] = [e],eh,es] | 1T —1 0
-1 2 1



