

Instructor’s Manual

Computers as
Components
Principles of Embedded Computing System Design, 3rd edition
© 2011 Marilyn Wolf

Marilyn Wolf
2011

Chapter 1

Q1-1 Briefly describe the distinction between requirements and specification.

The distinction between requirements and specifications stem from the fact that requirements are

inherently an informal description of what the product should be. This description should be something

that could be given to and understood by a marketing specialist and should include such items as size,

weight, speed, UI, and performance. In contrast, specifications are a more formal, precise description of

the product. This description should be written so as to allow the system’s architects to implement the

feature described in the requirements.

Q1-2: Give an example of a requirement on a computer printer.

Q1-3: Give an example of a requirement on a digital still camera.

Q1-4: Given an example of a specification on a computer printer, giving both type of specification and

any required values. Take your example from an existing product and identify that product.

Q1-5: Given an example of a specification on a digital still camera, giving both type of specification and

any required values. Take your example from an existing product and identify that product.

Q1-6 Briefly describe the distinction between specification and architecture.

The distinction between specification and architecture is that the specification is a detailed description of

how a system behaves. In contrast, a system’s architecture describes how a system is actually built.

While in many systems a specification may lead directly to one type of architecture, ideally this is not the

case.

Q1-7 At what stage of the design methodology would we determine what type of CPU to use (8-bit vs.

16-bit vs. 32-bit, which model of a particular type of CPU, etc.)?

We would determine what type of CPU we would use in the architecture design stage of the design

methodology

Q1-8 At what stage of the design methodology would we choose a programming language?

We would choose a high-level programming language in the architecture design stage of the design

methodology.

Q1-9: Should an embedded computing system include software designed in more than one programming

language? Justify your answer.

We often design performance- or power-critical code in assembly language and large, complex code in a

high-level language.

Q1-10 At what stage of the design methodology would we test our design for functional correctness?

We would test our design for functional correctness in both the component design/building phase and the

system integration phase of the design methodology

Q1-11 Compare and contrast top-down and bottom-up design.

In a bottom-up design, we begin with individual components that could comprise a system and work our

way up to eventual complete a full system. In contrast, in a top-down design, we begin with an abstract

notion of a device and work our way down to the components that comprise the system. Of course, both

methods are similar from the standpoint that the net result is a finished product. However, they both

obviously achieve this result in completely different ways. Furthermore, both methods are related since it

would be very difficult to do a good top down design without any knowledge of underlying components

and vice versa.

Q1-12: Give an example of a design problem that is best solved using top-down techniques.

Construction of large, complex software systems is a good problem for top-down design.

Q1-13: Give an example of a design problem that is best solved using bottom-up techniques.

Estimation of performance and power costs is based on bottom-up information.

Q1-14 Provide a concrete example of how bottom-up information from the software programming phase of design may be

useful in refining the architectural design.

Suppose that the information obtained from the software programming phase indicates that the

application being written does the majority of its work in floating point. If this knowledge had been

known during the architecture design phase, it would be possible to make the hardware more efficient

when doing floating-point calculations.

Q1-15 Give a concrete example of how bottom-up information from I/O device hardware design may be useful in refining

the architectural design.

Suppose the data I/O design revealed that the device being made needed some high speed external data

connection that required a higher bus bandwidth than a regular interrupt driven system can provide. If

this info had been known during the architecture design phase, it might have been possible to add

something like a DMA controller to interface directly with the data I/O device.

Q1-16 Create a UML state diagram for the issue-command() behavior of the Controller class of Figure XXX.

IDLE

new-cmd

F

Get cmd-type

Test cmd-

type

rec-speed issue-command(estop) rec-inertia

cmd-type == set-speed cmd-type == set-inertia

cmd-type == estop

T

IDLE

issue-command(set-

speed,new speed)

old speed=new speed

issue_command(set-

inertia,new inertia)

old inertia = new inertia

rec-speed == current speed rec-inertia == current inertia

rec-speed != current speed rec-inertia != current inertia

NOTE: The 2 IDLE states shown below are the same state.

Q1-17 Show how a Set-speed command flows through the refined class structure described in Figure XXX,

moving from a change on the front panel to the required changes on the train:

a) Show it in the form of a collaboration diagram.

Knobs Panel Formatter Transmitter Sender

Detector Receiver controller
Motor

Interface
Pulser

1: user

changes knob

2: panel

detects

change, reads

the knobs, and

tells the

formatter

3: formatter

makes a new

message and

tells transmitter

4: transmitter

passes Sender

the message

5: Sender

sends the

message to

the trains

6: detector

detects that a

message is

being sent

7: Receiver

receives the

message and

tells the

controller

8: Controller

interprets the

message and

tells the motor

interface

9: motor

interface

adjusts duty

cycle to

account for the

new speed

Show it in the form of a sequence diagram.

:knobs :panel :formatter :transmitter :sender :detector :receiver :controller
motor

;interface
:pulser

user changes

knob panel detects

change, reads

the knobs, and

tells the

formatter

formatter

makes a new

message and

tells transmitter

transmitter

passes Sender

the message Sender sends

the message

to the trains
detector

detects that a

message is

being sent

Receiver

receives the

message and

tells the

controller

Controller

interprets the

message and

tells the motor

interface

motor interface

adjusts duty

cycle to

account for the

new speed

Q1-18 Show how a Set-inertia command flows through the refined class structure described in Error!

Reference source not found., moving from a change on the front panel to the required changes on the

train:

a) Show it in the form of a collaboration diagram.

Knobs Panel Formatter Transmitter Sender

Detector Receiver controller
Motor

Interface
Pulser

1: user

changes knob

2: panel

detects

change, reads

the knobs, and

tells the

formatter

3: formatter

makes a new

message and

tells transmitter

4: transmitter

passes Sender

the message

5: Sender

sends the

message to

the trains

6: detector

detects that a

message is

being sent

7: Receiver

receives the

message and

tells the

controller

8: Controller

interprets the

message and

tells the motor

interface

9: motor

interface

adjusts duty

cycle to

account for the

new inertia

b) Show it in the form of a sequence diagram.

:knobs :panel :formatter :transmitter :sender :detector :receiver :controller
motor

;interface
:pulser

user changes

knob panel detects

change, reads

the knobs, and

tells the

formatter

formatter

makes a new

message and

tells transmitter

transmitter

passes Sender

the message Sender sends

the message

to the trains
detector

detects that a

message is

being sent

Receiver

receives the

message and

tells the

controller

Controller

interprets the

message and

tells the motor

interface

motor interface

adjusts duty

cycle to

account for the

new inertia

Q1-19 Show how an Estop command flows through the refined class structure described in Figure XXX,

moving from a change on the front panel to the required changes on the train:

a) Show it in the form of a collaboration diagram.

Knobs Panel Formatter Transmitter Sender

Detector Receiver controller
Motor

Interface
Pulser

1: user

changes knob

2: panel

detects

change, reads

the knobs, and

tells the

formatter

3: formatter

makes a new

message and

tells transmitter

4: transmitter

passes Sender

the message

5: Sender

sends the

message to

the trains

6: detector

detects that a

message is

being sent

7: Receiver

receives the

message and

tells the

controller

8: Controller

interprets the

message and

tells the motor

interface

9: motor

interface stops

the motor

b) Show it in the form of a sequence diagram.

:knobs :panel :formatter :transmitter :sender :detector :receiver :controller
motor

;interface
:pulser

user changes

knob panel detects

change, reads

the knobs, and

tells the

formatter

formatter

makes a new

message and

tells transmitter

transmitter

passes Sender

the message Sender sends

the message

to the trains
detector

detects that a

message is

being sent

Receiver

receives the

message and

tells the

controller

Controller

interprets the

message and

tells the motor

interface

motor interface

stops the

motor

Q1-20 Draw a state diagram for a behavior that sends the command bits on the track. The machine should

generate the address, generate the correct message type, include the parameters, and generate the ECC.

Read Panel panel active

F

T
Read Panel: get train

number

Translate train number to

binary

Read Panel: Get

Command type

test

command

cmd==estop

cmd == set speed

cmd == set inertia

Read Panel: Get

parameter info

encode parameter info concatenate all packet info

generate ECC parity check

and append

encode command info

send command packet end

Q1-21 Draw a state diagram for a behavior that parses the received bits. The machine should check the
address, determine the message type, read the parameters, and check the ECC.

Wait for Command Packet
Received

Packet

F

Check ECC

T

ECC Check

Failed

Check

Address

Determine

Message

Type

Read

Parameters

Perform Action

Valid ECC

Invalid

Address

Invalid

Message

Invalid

Parameter

Q1-22 Draw a class diagram for the classes required in a basic microwave oven. The system should be

able to set the microwave power level between 1 and 9 and time a cooking run up to 59 minutes and 59

seconds in one-second increments. Include * classes for the physical interfaces to the telephone line,

microphone, speaker, and buttons.

Wait for Command Packet
Received

Packet

F

Check ECC

T

ECC Check

Failed

Check

Address

Determine

Message

Type

Read

Parameters

Perform Action

Valid ECC

Invalid

Address

Invalid

Message

Invalid

Parameter

Q1-23 Draw a collaboration diagram for the microwave oven of Figure XXX. The diagram should show

the flow of messages when the user first sets the power level to 7, then sets the timer to 2:30, and then

runs the oven.

Buttons Panel Control

1. User Sets

Power to 7

Buttons Panel Control

2. User Sets

Timer to 2:30

Buttons Panel Control

3. User

Presses Start

Oven Control

4. Panel Updates the

Oven Control's Power

and Time settings and

starts the oven

