
FUNDAMENTALS OF SUPPLY CHAIN
THEORY, 2ND EDITION:
INSTRUCTOR’S MANUAL





FUNDAMENTALS OF SUPPLY
CHAIN THEORY, 2ND EDITION:
INSTRUCTOR’S MANUAL

Lawrence V. Snyder
Lehigh University

Zuo-Jun Max Shen
University of California, Berkeley

A JOHN WILEY & SONS, INC., PUBLICATION



Copyright ©2019 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,
fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herin may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care
Department with the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,
however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

Fundamentals of Supply Chain Theory: Instructor’s Manual, 2nd edition / Lawrence V. Snyder and Zuo-Jun Max Shen.
“Wiley-Interscience."
Includes bibliographical references.
1. Supply Chain Management. 2. Operations Research

sciences—Research—Supply Chain Management.

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1



CONTENTS IN BRIEF

Forecasting and Demand Modeling 9

Deterministic Inventory Models 25

Stochastic Inventory Models: Periodic Review 47

Stochastic Inventory Models: Continuous Review 83

Multi-Echelon Inventory Models 99

Dealing with Uncertainty in Inventory Optimization 111

Facility Location Models 123

Supply Uncertainty 161

The Traveling Salesman Problem 173

The Vehicle Routing Problem 201

Integrated Supply Chain Models 213

The Bullwhip Effect 217

Supply Chain Contracts 225

Auctions 237

Applications of Supply Chain Theory 243

Appendix A: Multiple-Chapter Problems 247

v





CONTENTS

Forecasting and Demand Modeling 9

Problems 9

Deterministic Inventory Models 25

Problems 25

Stochastic Inventory Models: Periodic Review 47

Problems 47

Stochastic Inventory Models: Continuous Review 83

Problems 83

Multi-Echelon Inventory Models 99

Problems 99

Dealing with Uncertainty in Inventory Optimization 111

Problems 111

Facility Location Models 123

vii



viii CONTENTS

Problems 123

Supply Uncertainty 161

Problems 161

The Traveling Salesman Problem 173

Problems 173

The Vehicle Routing Problem 201

Problems 201

Integrated Supply Chain Models 213

Problems 213

The Bullwhip Effect 217

Problems 217

Supply Chain Contracts 225

Problems 225

Auctions 237

Problems 237

Applications of Supply Chain Theory 243

Problems 243

Appendix A: Multiple-Chapter Problems 247

Problems 247



CHAPTER 2

FORECASTING AND DEMAND MODELING

PROBLEMS

2.1 (Forecasting without Trend) The (a) moving average and (b) exponential smoothing
forecasts are given in the table below. The last row lists the forecasts for tomorrow’s demand.

Day Demand Moving Average (a) Exp. Smoothing (b)
1 4,804.9 — 4,804.9
2 4,285.0 — 4,804.9
3 3,764.6 — 4,752.9
4 2,486.8 — 4,654.1
5 3,012.2 — 4,437.4
6 2,896.9 — 4,294.8
7 1,985.1 — 4,155.0
8 3,437.0 3,319.4 3,938.0
9 3,345.7 3,123.9 3,887.9
10 1,841.3 2,989.8 3,833.7
11 2,114.6 2,715.0 3,634.5
12 1,803.6 2,661.8 3,482.5
13 2,678.7 2,489.2 3,314.6
14 2,070.5 2,458.0 3,251.0

(cont’d)
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10 FORECASTING AND DEMAND MODELING

Day Demand Moving Average (a) Exp. Smoothing (b)
15 2,645.5 2,470.2 3,133.0
16 3,292.6 2,357.1 3,084.2
17 3,844.0 2,349.5 3,105.1
18 4,901.8 2,635.6 3,178.9
19 3,206.5 3,033.8 3,351.2
20 3,362.6 3,234.2 3,336.8
21 2,466.2 3,331.9 3,339.3
22 1,048.5 3,388.5 3,252.0
23 1,431.3 3,160.3 3,031.7
24 2,574.3 2,894.4 2,871.6
25 3,310.7 2,713.0 2,841.9
26 4,415.4 2,485.7 2,888.8
27 2,919.6 2,658.4 3,041.4
28 3,905.5 2,595.1 3,029.3
29 1,332.8 2,800.8 3,116.9
30 1,969.5 2,841.4 2,938.5

2,918.3 2,841.6

2.2 (Forecasting with Trend)
a) The double exponential smoothing calculations are given in the table below. The

last row lists the forecast for next week’s demand.

Week Demand It St yt
1 646 646.00 — —
2 683 683.00 37.00 —
3 708 717.60 36.76 720.00
4 761 755.69 36.89 754.36
5 787 791.46 36.78 792.58
6 809 824.40 36.40 828.25
7 856 859.83 36.30 860.79
8 892 895.31 36.22 896.13
9 944 934.02 36.47 931.53
10 991 974.59 36.88 970.49
11 1034 1,015.97 37.33 1,011.47
12 1091 1,060.84 38.08 1,053.30
13 1123 1,103.74 38.56 1,098.92
14 1144 1,142.64 38.60 1,142.30
15 1164 1,177.79 38.25 1,181.24
16 1186 1,210.04 37.65 1,216.04
17 1231 1,244.35 37.32 1,247.69
18 1255 1,276.33 36.78 1,281.67
19 1298 1,310.10 36.48 1,313.12
20 1337 1,344.66 36.29 1,346.58
21 1389 1,382.56 36.45 1,380.95
22 1436 1,422.41 36.79 1,419.01

(cont’d)
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Week Demand It St yt
23 1490 1,465.36 37.41 1,459.20
24 1528 1,507.82 37.91 1,502.77
25 1555 1,547.58 38.10 1,545.73
26 1613 1,591.14 38.64 1,585.68

1,629.79

b) From (2.23) and (2.24), we have

Axy = 1446029

Axx = 38025.

Therefore, from (2.21) and (2.22), we have

β1 = 38.03

β0 = 600.12

Finally, y27 (the forecast for next week’s demand) is

y27 = β0 + 27β1 = 1626.88.

2.3 (Forecasting Cupcake Sales)
a) We initialize the method with I1 = D1 = 47.2 and S1 = D2 −D1 = 5.1. Then

y2 = I1 + S1 = 52.3

I2 = 0.1D2 + 0.9(I1 + S1) = 52.3

S2 = 0.2(I2 − I1) + 0.8S1 = 5.1

y3 = I2 + S2 = 57.4

b)

I3 = 0.1D3 + 0.9(I2 + S2) = 57.6

S3 = 0.2(I3 − I2) + 0.8S2 = 5.14

y4 = I3 + S3 = 62.74

2.4 (Forecasting with Seasonality) The triple exponential smoothing calculations are
given in the table below. The last row lists the forecast for May.

Week Demand It St ct yt
1 96 96 — 0.0940 —
2 319 319 223 0.3119 —
3 405 405 86 0.3956 —
4 830 830 425 0.8111 —
5 874 874 44 0.8536 —
6 1,719 1,719 845 1.6792 —
7 2,797 2,797 1,077 2.7315 —

(cont’d)
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Week Demand It St ct yt
8 2,235 2,235 -562 2.1826 —
9 1,471 1,471 -764 1.4368 —

10 735 735 -736 0.7175 —
11 383 383 -351 0.3743 —
12 422 422 38 0.4118 —
13 144 674 38 0.1298 43.26
14 364 803 60 0.3544 222.19
15 692 1,040 67 0.4764 341.40
16 656 1,047 84 0.7556 897.74
17 1,223 1,191 76 0.9055 965.46
18 2,199 1,276 83 1.6926 2,128.25
19 3,530 1,345 83 2.6992 3,711.47
20 2,973 1,415 82 2.1580 3,117.92
21 2,099 1,490 81 1.4285 2,150.85
22 1,244 1,603 80 0.7351 1,126.76
23 525 1,627 83 0.3588 630.02
24 209 1,469 77 0.3309 704.30
25 356 1,786 54 0.1507 200.80
26 540 1,777 80 0.3393 651.90
27 770 1,809 71 0.4611 884.46
28 646 1,675 67 0.6446 1,420.37
29 1,355 1,693 47 0.8740 1,577.36
30 2,379 1,673 44 1.6114 2,945.12
31 3,946 1,666 38 2.5999 4,635.39
32 3,503 1,688 33 2.1332 3,677.41
33 2,723 1,758 32 1.4645 2,458.85
34 1,243 1,771 36 0.7253 1,316.27
35 499 1,724 34 0.3381 648.25
36 322 1,601 26 0.2921 581.53
37 238 1,617 11 0.1496 245.02
38 479 1,584 11 0.3282 552.26
39 630 1,550 7 0.4447 735.83
40 921 1,531 3 0.6317 1,003.46

1,227 1 0.6118 1,340.59

2.5 (Forecasting Melon Slicers) Let α = 0.2, β = 0.3, γ = 0.1.
a)

y13 = (I12 + S12)c9 = 290.4

b)

I13 = 0.2
D13

c9
+ (1− 0.2)(I12 + S12) = 751.3

S13 = 0.3(I13 − I12) + (1− 0.3)S12 = 91.59

c13 = 0.1
D13

I13
+ (1− 0.1)c9 = 0.4054
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2.6 (Forecasting Using Regression)
a) From standard regression analysis, we get

β0 = 200.73

β1 = 18.98

b) The forecasts for bottled water for the next three matches are

200.73 + 18.98× 21.6 = 610.64

200.73 + 18.98× 27.3 = 718.81

200.73 + 18.98× 26.6 = 705.53

2.7 (Multiple-Period-Ahead Forecasts)
a) Because moving average assumes the demand is stationary, the forecast for period

t+ k is identical to that for period t; that is, yt−1,t+k = yt.
b) Double exponential smoothing assumes the demand follows a linear trend. The

forecast for period t+ k just follows that trend, extended out k periods, using the
current estimates for the base signal and slope:

yt−1,t+k = It−1 + (k + 1)St−1.

c) Linear regression can be used for multi-period-ahead forecasts without any mod-
ification; we simply set

yt−1,t+k = β̂0 + (t+ k)β̂1.

2.8 (Forecasting using Machine Learning Methods) Since there are only 38 data points
in the dataset, we choose to fit a decision tree for this problem. As visualized in Figure
S.2.1, this model will predict the demand as 598,721 and 707 for 21.6◦, 27.3◦ and 26.6◦.

Figure S.2.1 A decision tree model

Corresponding R code stated as follows.

l i b r a r y ( r p a r t )
l i b r a r y ( r p a r t . p l o t )

# i n p u t d a t a
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d a t a = r e a d . csv ( " b o t t l e d−w a t e r . c sv " )
# t r a i n a d e c i s i o n t r e e
mod = r p a r t ( Demand ˜ Temp ,
d a t a = da t a , minbucke t =3 , cp = 0 . 0 0 1 )
# p l o t t h e t r e e
prp ( mod )

2.9 (Ridge Regression) We use the matrix representation in this solution. First let X
denotes a 2× n matrix

[
x1, . . . , xi, . . . , xn

1, . . . , 1, . . . , 1

]

where each column consists of a sample xi and 1 for intercept. Let β = (beta1, β0)) denote
the vector of coefficient and y = (y1, · · · , yn) denote the vector of dependent variables.
Therefore, under matrix representation, we would like to solve

min
β

(y − βTX)T (y − βTX) + λβTβ (S.2.1)

And the first order condition of β being optimal is

−2(y − βTX)TX + 2λβ = 0 (S.2.2)

⇒ −yTX +XTXβ + λβ = 0 (S.2.3)

Therefore,

β = (XTX + λI)−1yTX (S.2.4)

2.10 (Forecasting Fires)
a) Letting X1 = high temperature, X2 = precipitation, and X3 = 1 if the day is a

weekend day, we get β̂0 = 151.9503, β̂1 = −0.6089, β̂2 = 2.0906, β̂3 = 7.5745.
b)
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136.4667 119.7195  241.125 107.5625 95.30909

171.8889 115.8571 114.6154 124.6495   130.25 104.5376

HighTemp<45.5   

Precip<0.085   Precip<0.045   

HighTemp<38.5   HighTemp<42.5   HighTemp<70.5   Precip<0.345   

HighTemp<40.5   IsWeekend=0   Precip<0.365   

   HighTemp>=45.5

   Precip>=0.085    Precip>=0.045

   HighTemp>=38.5    HighTemp>=42.5    HighTemp>=70.5    Precip>=0.345

   HighTemp>=40.5    IsWeekend=1    Precip>=0.365

c) β0 = 133.0427, β = (−0.3426,−2.5369,−4.0248)

d)

Linear Regression Regression Tree SVR
Date High Temp Precipitation IsWeekend Actual # Fires Forecast Error Forecast Error Forecast Error

1/1/16 42 0 0 142 126.38 -15.62 119.72 -22.28 114.63 -27.37
1/2/16 40 0 1 93 135.17 42.17 119.72 26.72 123.36 30.36
1/3/16 45 0 1 116 132.12 16.12 119.72 3.72 121.65 5.65
1/4/16 36 0 0 110 130.03 20.03 136.47 26.47 116.68 6.68
1/5/16 29 0 0 123 134.29 11.29 136.47 13.47 119.08 -3.92
1/6/16 41 0 0 123 126.98 3.98 119.72 -3.28 114.97 -8.03
1/7/16 46 0 0 114 123.94 9.94 114.62 0.62 113.26 -0.74
1/8/16 46 0 0 98 123.94 25.94 114.62 16.62 113.26 15.26
1/9/16 47 0 1 122 130.91 8.91 124.65 2.65 120.96 -1.04

1/10/16 59 1.8 1 92 127.36 35.36 104.54 12.54 112.29 20.29

The MSE values are: 1.09×103 for linear regression, 1.36×103 for regression
tree, and 1.09× 103 for SVR.

2.11 (Exponential Smoothing for Retail Sales)
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Store 2 Dept 93 Store 3 Dept 60 Store 1 Dept 16
Week Forecast Week Forecast Week Forecast

2/19/10 70,896.65 2/12/10 132.00 2/3/12 8,821.94
2/26/10 71,679.40 2/19/10 132.00 2/10/12 10,740.17
3/5/10 71,341.40 2/26/10 133.32 2/17/12 14,951.53
3/12/10 71,418.10 3/5/10 133.12 2/24/12 18,604.71
3/19/10 71,577.46 3/12/10 128.99 3/2/12 23,894.78
3/26/10 71,563.45 3/19/10 138.41 3/9/12 27,954.71
4/2/10 69,962.75 3/26/10 137.45 3/16/12 47,788.14
4/9/10 70,833.01 4/2/10 141.91 3/23/12 42,955.89
4/16/10 71,058.82 4/9/10 141.75 3/30/12 51,485.23
4/23/10 70,910.45 4/16/10 133.69 4/6/12 60,960.74
4/30/10 69,610.49 4/23/10 129.47 4/13/12 64,941.58
5/7/10 67,697.51 4/30/10 127.21 4/20/12 59,775.00
5/14/10 67,793.90 5/7/10 133.21 4/27/12 50,860.55
5/21/10 66,623.68 5/14/10 148.87 5/4/12 50,422.75
5/28/10 66,146.74 5/21/10 138.42 5/11/12 46,349.49
6/4/10 65,639.98 5/28/10 134.82 5/18/12 39,351.53
6/11/10 66,548.59 6/4/10 137.03 5/25/12 44,076.58
6/18/10 66,980.57 6/11/10 146.84 6/1/12 47,542.75
6/25/10 67,485.30 6/18/10 146.95 6/8/12 35,530.11
7/2/10 66,712.28 6/25/10 139.73 6/15/12 36,524.94

Error Measure Store 2 Dept 93 Store 3 Dept 60 Store 1 Dept 16

MAD 6815.50 37.58 3367.55
MSE 7.2070× 107 2234.72 2.2666× 107

MAPE 32.07 9.86 11.38

a) These data exhibit a trend, so double exponential smoothing is most appropriate.
The first 20 forecast values are given in the first table above. The MAD, MSE,
and MAPE are given in the second table. The actual and forecast sales are plotted
below.
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Jan 2010 Jul 2010 Jan 2011 Jul 2011 Jan 2012 Jul 2012 Jan 2013

Week
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b) These data do not exhibit a trend or seasonality, so single exponential smoothing
is most appropriate. The first 20 forecast values are given in the first table above.
The MAD, MSE, and MAPE are given in the second table. The actual and
forecast sales are plotted below.

Jan 2010 Jul 2010 Jan 2011 Jul 2011 Jan 2012 Jul 2012 Jan 2013

Week
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Store 3, Department 60 (Single ES)

actual sales
forecast

c) These data exhibit seasonality, so triple exponential smoothing is most appropri-
ate. The first 20 forecast values are given in the first table above. The MAD,
MSE, and MAPE are given in the second table. The actual and forecast sales are
plotted below.
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Jan 2010 Jul 2010 Jan 2011 Jul 2011 Jan 2012 Jul 2012 Jan 2013

Week
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2.12 (Mean and Variance of Exponential Smoothing Forecast Error)

µe = E[yt −Dt] = E[yt]− E[Dt]

= E

[ ∞∑
i=0

α(1− α)iDt−i−1

]
− µ

= 1 · µ− µ (by (C.50)))

= 0

σe =
√

Var[yt −Dt] =
√

Var[yt] + Var[Dt]

=

√√√√Var

[ ∞∑
i=0

α(1− α)iDt−i−1

]
+ σ2

=

√√√√ ∞∑
i=0

α2(1− α)2iσ2 + σ2

=

√
α2σ2

1− (1− α)2
+ σ2

=

√
α2σ2 + σ2 (1− (1− α)2)

1− (1− α)2

= σ

√
2

2− α
.

2.13 (Forecasting Simulation)
a) Our simulation resulted in MSE = 41.10 and MAD = 5.12. The standard deviation

of the forecast error is 6.42. The approximation in (2.28) is 1.25MAD = 6.40,
which is quite close to the actual value.
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b) MSE = 37.30, MAD = 4.86, standard deviation of forecast error = 6.11, 1.25MAD =

6.08, which is again quite close.
c) Since the MSE and MAD are smaller for exponential smoothing, exponential

smoothing appears to work slightly better for this data set.

2.14 (Bass Diffusion for LPhone) The peak demand occurs at time

t =
1

p+ q
ln

(
q

p

)
= 9.238.

The cumulative sales by then is given by

m(q − p)
2q

= 2.845 million.

2.15 (Bass Diffusion for iPeel)
a) The parameters are m = 170, 000, p = 0.07, and q = 0.31. From Corollary 2.2,

we have

t∗ = 3.9160

d(t∗) = 19796.77

D(t∗) = 65806.45

Therefore, sales will peak at year 3.9160, i.e., on November 30 of the third year
after sales begin. At that time, the demand rate will be 19796.77 and the total
sales will be 65806.45.

b) The reader can verify thatD(t) = 170, 000×0.9 = 153, 000 when t = 10.2873,
i.e., on April 12 of the tenth year after sales begin.

c) The plot is given below.

020000400006000080000100000120000140000160000180000
0.0 1.8 3.6 5.4 7.2 9.0 10.8 12.6 14.4 16.2 18.0 19.8 21.6 23.4 25.2 27.0 28.8 30.6 32.4 34.2t

d(t)D(t)
2.16 (Bass Diffusion for Books) Standard regression analysis gives estimates of a, b,
and c in

dt = a+ bDt−1 + c(Dt−1)2
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as

a = 227.5654

b = 0.1361

c = −0.000009715.

Then from (2.51)–(2.53), we have

m = 15513.1268

p = 0.0147

q = 0.1507.

2.17 (Proof of Corollary 2.2) The derivative of d(t) from (2.44) is given by

d′(t) =
mp(p+ q)3(p+ qe−(p+q)t)e−(p+q)t[−(p+ qe−(p+q)t) + 2qe−(p+q)t]

(p+ qe−(p+q)t)4
.

If t = 1
p+q ln

(
q
p

)
, then e−(p+q)t = p

q . Then d′(t) = 0 since

−(p+ qe−(p+q)t) + 2qe−(p+q)t = −
(
p+ q

p

q

)
+ 2q

p

q
= 0.

2.18 (Influentials and Imitators) [This problem is adapted from Ho et al. (2011).]
We use the subscripts 1 and 2 to denote each type (1 = influentials, 2 = imitators) and

subscript m to denote the total population.
a) Each type’s instantaneous adoption behavior is captured by the following func-

tions:

d1(t) = (p1 + q1D1(t))(θ −D1(t)) (S.2.5)

d2(t) = (p2 + qcD1(t) + q2D2(t))(θ̄ −D2(t)) (S.2.6)

dm(t) = d1(t) + d2(t) (S.2.7)

Parameters pi and qi (i = 1, 2) are Type i’s within-segment innovation and
imitation parameters. As Type 2’s adoption behavior can also be influenced by
Type 1, we use qc to denote the cross-segment imitation parameter. Equation
(S.2.5) means that an influential’s likelihood of adopting at time t, conditioned
on no adoption in the past, is determined by her intrinsic motivation and the
within-segment social influence at that time. Equation (S.2.6) tells us that an
imitator’s likelihood of buying at t given that she didn’t adopt in the past depends
on her intrinsic motivation as well as the social contagion of both the influentials
segment and the imitators segment at that time.

b) When θ = 0 or θ = 1, all customers fall into a single segment and the model is
reduced to the traditional Bass diffusion model. When 0 < θ < 1 and qc = 0,
customers of different types are disconnected, and the diffusion process of each
type independently experiences its own Bass-type contagion process.

c) If there are no pre-release purchases (i.e., D1(0) = D2(0) = 0), the cumulative
adoption at t can be written as:
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D1(t) =
1− e−(p1+q1θ)t

1
θ + q1

p1
e−(p1+q1θ)t

(S.2.8)

A = exp

(
−q2θ̄t− p2t−

qc
q1

ln

(
1

θ
+
q1

p1
e−(p1+q1θ)t

)
+

θqc
p1 + q1θ

ln

(
q1

p1
e−(p1+q1θ)t

))
(S.2.9)

B =q2

(
q1

p1

) θqc
p1+θq1

∫ t

0

e−(q2θ̄+p2+θqc)s

(
1

θ
+
q1

p1
e−(p1+q1θ)s

)− qcq1
ds (S.2.10)

C =−
(

1

θ
+
q1

p1

)− qcq1 ( q1

p1

) θqc
p1+q1θ

θ̄ (S.2.11)

D2(t) =θ̄ +
A

B + C
(S.2.12)

Dm(t) =D1(t) +D2(t) (S.2.13)

2.19 (Demand Diffusion Across Multiple Markets) [This problem is adapted from Wu
et al. (2009).]

This lifecycle demand can be expressed as a bell-shaped time-series curve or as a
cumulative curve, in which each point on the curve represents the percentage of lifecycle
demand satisfied up to that time. We use D(T + τ) to denote the cumulative percentage
of total market demand that has been observed by time T + τ , given that actual demand
observations up to time T , Θ(T ) = D(1), D(2), . . . , D(T ), are available.

Let K be the set of different diffusion models that are used in forecasting (k ∈ K). Let
D̂k(T + τ |Θ(T )) denote an estimate of cumulative demand percentage observed by time
T + τ , projected by diffusion model k. Then

D(T + τ) = D̂k(T + τ |Θ(T )) + ε(T + τ |Θ(T )).

We are interested to know if combining diffusion models derived from different vertical
markets would help in improving the overall market forecast. Given a particular diffusion
model, the actual cumulative demand at T + τ , Dk(T + τ), can be represented as a
normally distributed random variable (assuming normally distributed fitting errors). With
the combination of multiple diffusion models to forecast demands τ -period ahead, D̂(T+τ),
the combined forecast is a linear combination of independent normal random variables
D̂k(T + τ |Θ(T )), it is also normally distributed with mean

∑
k∈K wkD̂k(T + τ |Θ(T ))

and variance
∑
k∈K w

2
kσ

2
k, where wk is the weight assigned to model k’s forecast by the

combination method. Note that combined forecast’s variance is:

σ2
c =

∑
k∈K

(
1/σ2

k∑
i∈K 1/σ2

i

)2

σ2
k =

∑
k∈K

1

σ2
k(
∑
i∈K 1/σ2

i )2
=

1∑
i∈K 1/σ2

i

< σ2
k,

for all k ∈ K.

2.20 (Leading Indicators)
a) The ρik values are given in the table below. The (i, k) pairs for which ρik ≥

ρmin = 0.85 are (5, 5), (7, 4), (7, 5), and (7, 6).
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Product k = 3 4 5 6 7 8 9
1 0.7306 0.6625 0.4829 0.1950 −0.1499 −0.4654 −0.6842

2 −0.3573 −0.4878 −0.5728 −0.6191 −0.6283 −0.5509 −0.3432

3 0.5031 0.2981 0.0420 −0.2302 −0.5298 −0.7759 −0.8717

4 0.5315 0.7005 0.8032 0.7579 0.5760 0.3223 0.0548

5 0.6332 0.7833 0.8580 0.8486 0.7687 0.5857 0.3604

6 −0.5133 −0.5585 −0.5678 −0.5429 −0.4740 −0.3057 0.0000

7 0.7918 0.8700 0.9119 0.8573 0.6326 0.3045 0.0757

8 −0.6116 −0.5698 −0.4908 −0.3899 −0.2762 −0.1409 0.0000

9 −0.4198 −0.5885 −0.6871 −0.7131 −0.6909 −0.5831 −0.3718

10 0.6804 0.5132 0.2625 −0.0548 −0.4028 −0.6986 −0.8594

11 0.2557 0.0519 −0.1817 −0.3911 −0.5841 −0.7489 −0.7987

12 0.6836 0.7289 0.6964 0.5485 0.2975 −0.0019 −0.2556

13 −0.4310 −0.3536 −0.2119 −0.0213 0.1673 0.2957 0.3566

14 0.1039 −0.1601 −0.4077 −0.6302 −0.8229 −0.9008 −0.8281

15 0.1927 −0.0886 −0.3620 −0.5990 −0.8108 −0.9210 −0.8783

16 −0.3664 −0.5326 −0.6537 −0.7199 −0.7407 −0.6850 −0.5272

17 −0.0161 0.2274 0.3666 0.3851 0.3850 0.4555 0.5434

18 0.5056 0.6522 0.7573 0.7921 0.6930 0.4625 0.1693

19 0.6174 0.6906 0.6889 0.5715 0.3498 0.0708 −0.1751

20 0.5941 0.4279 0.1844 −0.1241 −0.4533 −0.7112 −0.8356

21 −0.6465 −0.5978 −0.5000 −0.3713 −0.2374 −0.1078 0.0000

22 0.7444 0.6189 0.4086 0.1445 −0.1511 −0.4366 −0.6487

23 −0.0360 0.2008 0.4008 0.4606 0.4447 0.4773 0.5297

24 0.0695 −0.1474 −0.3529 −0.5636 −0.7773 −0.8901 −0.8353

25 −0.6564 −0.5713 −0.4386 −0.2758 −0.1219 0.0000 0.0000

b) We’ll use k = 5, i = 5. The regression model in (2.54) yields β0 = 63985.00,
β1 = 11.65. Then we get the following forecasts:

D̃−5
27 = β0 + β1D5,22 = 64019.96

D̃−5
28 = β0 + β1D5,23 = 64008.30

2.21 (Discrete Choice with Uniform Errors) εni has pdf and cdf

f(x) =
1

2

F (x) =
x+ 1

2

Then

Pni = P (εnj < Vni + εni − Vnj)

=
Vni + εni − Vnj + 1

2

=⇒ Pni|εni =
∏
j 6=i

Vni + εni − Vnj + 1

2
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=⇒ Pni =

∫ 1

−1

∏
j 6=i

Vni + εni − Vnj + 1

2
· 1

2
· dεni

2.22 (Discrete Choices for Day Care)

e−0.45PPA−0.23DA

e−0.45PPA−0.23DA + e−0.45PPB−0.23DB

2.23 (Using Discrete Choice to Forecast Movie Sales)
a) The table in the problem gives Vni values, where i represents the movie (or no

movie at all for i = 0) and n represents the age range. Using (2.62), we can
calculate the following table of Pni values:

Age Range
Movie 16–25 26–35 36+

Prognosis Negative 0.219 0.279 0.286
Rochelle, Rochelle 0.287 0.287 0.256
Sack Lunch 0.299 0.221 0.225
No movie 0.194 0.213 0.232

Therefore the expected demand for Prognosis Negative is

0.219 · 700 + 0.279 · 1900 + 0.286 · 1150 = 1012.213.

The expected demand for Rochelle, Rochelle is

0.287 · 700 + 0.287 · 1900 + 0.256 · 1150 = 1041.623.

The expected demand for Sack Lunch is

0.299 · 700 + 0.221 · 1900 + 0.225 · 1150 = 888.958.

b) We have the following table of Pni values:

Age Range
Movie 16–25 26–35 36+

Prognosis Negative 0.164 0.320 0.323
Rochelle, Rochelle 0.366 0.337 0.266
Sack Lunch 0.396 0.183 0.198
No movie 0.075 0.160 0.214

Therefore the expected demand for Prognosis Negative is

0.164 · 700 + 0.320 · 1900 + 0.323 · 1150 = 1093.380.

The expected demand for Rochelle, Rochelle is

0.366 · 700 + 0.337 · 1900 + 0.266 · 1150 = 1202.267.
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The expected demand for Sack Lunch is

0.396 · 700 + 0.183 · 1900 + 0.198 · 1150 = 852.991.

2.24 (Proof of (2.62)) From (2.61),

Pni =

∫ ∏
j 6=i

e−e
−(εni+Vni−Vnj)

 e−εnie−e
−εni

dεni.

Define ui ≡ e−εni and vi ≡ e−ui , then

Pni =

∫ ∏
j 6=i

vie
−(Vni−Vnj)

 dvi (S.2.14)

=

∫ (
v
∑
j 6=i e

−(Vni−Vnj)

i

)
dvi (S.2.15)

=
1∑

j 6=i e
−(Vni−Vnj)+1

v
∑
j 6=i e

−(Vni−Vnj)+1

i

∣∣∣∣∣
1

0

(S.2.16)

Notice that vi goes from 0 to 1 when εni goes from −∞ to +∞.
Thus,

Pni =
1∑

j 6=i e
−(Vni−Vnj)+1

=
1∑

j e
−(Vni−Vnj)

=
eVni∑
j e
Vnj

.


